Radiomics and deep learning in lung cancer

被引:178
作者
Avanzo, Michele [1 ]
Stancanello, Joseph [2 ]
Pirrone, Giovanni [1 ]
Sartor, Giovanna [1 ]
机构
[1] Ctr Riferimento Oncol Aviano CRO IRCCS, Dept Med Phys, Via F Gallini 2, Aviano 33081, PN, Italy
[2] Guerbet SA, Villepinte, France
关键词
Artificial Intelligence; Image biomarkers; Quantitative Imaging; Machine learning; PET; CT; EGFR MUTATION STATUS; RADIATION-THERAPY; PROGNOSTIC VALUE; PET/CT IMAGES; FEATURES; SEGMENTATION; PREDICTION; SIGNATURE; SURVIVAL; TEXTURE;
D O I
10.1007/s00066-020-01625-9
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Lung malignancies have been extensively characterized through radiomics and deep learning. By providing a three-dimensional characterization of the lesion, models based on radiomic features from computed tomography (CT) and positron-emission tomography (PET) have been developed to detect nodules, distinguish malignant from benign lesions, characterize their histology, stage, and genotype. Deep learning models have been applied to automatically segment organs at risk in lung cancer radiotherapy, stratify patients according to the risk for local and distant recurrence, and identify patients candidate for molecular targeted therapy and immunotherapy. Moreover, radiomics has also been applied successfully to predict side effects such as radiation- and immunotherapy-induced pneumonitis and differentiate lung injury from recurrence. Radiomics could also untap the potential for further use of the cone beam CT acquired for treatment image guidance, four-dimensional CT, and dose-volume data from radiotherapy treatment plans. Radiomics is expected to increasingly affect the clinical practice of treatment of lung tumors, optimizing the end-to-end diagnosis-treatment-follow-up chain. The main goal of this article is to provide an update on the current status of lung cancer radiomics.
引用
收藏
页码:879 / 887
页数:9
相关论文
共 86 条
[31]   Stage III Non-Small Cell Lung Cancer: Prognostic Value of FDG PET Quantitative Imaging Features Combined with Clinical Prognostic Factors [J].
Fried, David V. ;
Mawlawi, Osama ;
Zhang, Lifei ;
Fave, Xenia ;
Zhou, Shouhao ;
Ibbott, Geoffrey ;
Liao, Zhongxing ;
Court, Laurence E. .
RADIOLOGY, 2016, 278 (01) :214-222
[32]   Non-Small Cell Lung Cancer: Histopathologic Correlates for Texture Parameters at CT [J].
Ganeshan, Balaji ;
Goh, Vicky ;
Mandeville, Henry C. ;
Quan Sing Ng ;
Hoskin, Peter J. ;
Miles, Kenneth A. .
RADIOLOGY, 2013, 266 (01) :326-336
[33]   Texture analysis of non-small cell lung cancer on unenhanced computed tomography: initial evidence for a relationship with tumour glucose metabolism and stage [J].
Ganeshan, Balaji ;
Abaleke, Sandra ;
Young, Rupert C. D. ;
Chatwin, Christopher R. ;
Miles, Kenneth A. .
CANCER IMAGING, 2010, 10 (01) :137-143
[34]   Defining the biological basis of radiomic phenotypes in lung cancer [J].
Grossmann, Patrick ;
Stringfield, Olya ;
El-Hachem, Nehme ;
Bui, Marilyn M. ;
Velazquez, Emmanuel Rios ;
Parmar, Chintan ;
Leijenaar, Ralph T. H. ;
Haibe-Kains, Benjamin ;
Lambin, Philippe ;
Gilles, Robert J. ;
Aerts, Hugo J. W. L. .
ELIFE, 2017, 6
[35]   Shell feature: a new radiomics descriptor for predicting distant failure after radiotherapy in non-small cell lung cancer and cervix cancer [J].
Hao, Hongxia ;
Zhou, Zhiguo ;
Li, Shulong ;
Maquilan, Genevieve ;
Folkert, Michael R. ;
Iyengar, Puneeth ;
Westover, Kenneth D. ;
Albuquerque, Kevin ;
Liu, Fang ;
Choy, Hak ;
Timmerman, Robert ;
Yang, Lin ;
Wang, Jing .
PHYSICS IN MEDICINE AND BIOLOGY, 2018, 63 (09)
[36]   Radiomics in Pulmonary Lesion Imaging [J].
Hassani, Cameron ;
Varghese, Bino A. ;
Nieva, Jorge ;
Duddalwar, Vinay .
AMERICAN JOURNAL OF ROENTGENOLOGY, 2019, 212 (03) :497-504
[37]   Predicting Malignant Nodules from Screening CT Scans [J].
Hawkins, Samuel ;
Wang, Hua ;
Liu, Ying ;
Garcia, Alberto ;
Stringfield, Olya ;
Krewer, Henry ;
Li, Qian ;
Cherezov, Dmitry ;
Gatenby, Robert A. ;
Balagurunathan, Yoganand ;
Goldgof, Dmitry ;
Schabath, Matthew B. ;
Hall, Lawrence ;
Gillies, Robert J. .
JOURNAL OF THORACIC ONCOLOGY, 2016, 11 (12) :2120-2128
[38]   Predicting Outcomes of Nonsmall Cell Lung Cancer Using CT Image Features [J].
Hawkins, Samuel H. ;
Korecki, John N. ;
Balagurunathan, Yoganand ;
Gu, Yuhua ;
Kumar, Virendra ;
Basu, Satrajit ;
Hall, Lawrence O. ;
Goldgof, Dmitry B. ;
Gatenby, Robert A. ;
Gillies, Robert J. .
IEEE ACCESS, 2014, 2 :1418-1426
[39]   Deep learning for lung cancer prognostication: A retrospective multi-cohort radiomics study [J].
Hosny, Ahmed ;
Parmar, Chintan ;
Coroller, Thibaud P. ;
Grossmann, Patrick ;
Zeleznik, Roman ;
Kumar, Avnish ;
Bussink, Johan ;
Gillies, Robert J. ;
Mak, Raymond H. ;
Aerts, Hugo J. W. L. .
PLOS MEDICINE, 2018, 15 (11)
[40]   CT-based radiomic analysis of stereotactic body radiation therapy patients with lung cancer [J].
Huynh, Elizabeth ;
Coroller, Thibaud P. ;
Narayan, Vivek ;
Agrawal, Vishesh ;
Hou, Ying ;
Romano, John ;
Franco, Idalid ;
Mak, Raymond H. ;
Aerts, Hugo J. W. L. .
RADIOTHERAPY AND ONCOLOGY, 2016, 120 (02) :258-266