Synthesis of Fullerenes from a Nonaromatic Chloroform through a Newly Developed Ultrahigh-Temperature Flash Vacuum Pyrolysis Apparatus

被引:7
作者
Zhang, Hong-Gang [1 ]
Zhuo, Ya-Qi [1 ]
Zhang, Xiao-Min [1 ]
Zhang, Leng [1 ]
Xu, Piao-Yang [1 ]
Tian, Han-Rui [1 ]
Lin, Shui-Chao [1 ]
Zhang, Qianyan [1 ]
Xie, Su-Yuan [1 ]
Zheng, Lan-Sun [1 ]
机构
[1] Xiamen Univ, IChEM Collaborat Innovat Ctr Chem Energy Mat, State Key Lab Phys Chem Solid Surfaces, Dept Chem, Xiamen 361005, Peoples R China
关键词
fullerenes; flash vacuum pyrolysis; nanocarbon; pyrolysis apparatus; C-60; GRAPHENE; TRANSFORMATION; FRAGMENTS; C60;
D O I
10.3390/nano11113033
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The flash vacuum pyrolysis (FVP) technique is useful for preparing curved polycyclic aromatic compounds (PAHs) and caged nanocarbon molecules, such as the well-known corannulene and fullerene C-60. However, the operating temperature of the traditional FVP apparatus is limited to ~1250 & DEG;C, which is not sufficient to overcome the high energy barriers of some reactions. Herein, we report an ultrahigh-temperature FVP (UT-FVP) apparatus with a controllable operating temperature of up to 2500 & DEG;C to synthesize fullerene C-60 from a nonaromatic single carbon reactant, i.e., chloroform, at 1350 & DEG;C or above. Fullerene C-60 cannot be obtained from CHCl3 using the traditional FVP apparatus because of the limitation of the reaction temperature. The significant improvements in the UT-FVP apparatus, compared to the traditional FVP apparatus, were the replacement of the quartz tube with a graphite tube and the direct heating of the graphite tube by impedance heating instead of indirect heating of the quartz tube using an electric furnace. Because of the higher temperature range, UT-FVP can not only synthesize fullerene C-60 from single carbon nonaromatic reactants but sublimate some high-molecular-weight compounds to synthesize larger curved PAHs in the future.
引用
收藏
页数:9
相关论文
共 43 条
  • [1] Superconducting phase sequence in RxC60 fullerides (R=Sm and Yb)
    Akada, M
    Hirai, T
    Takeuchi, J
    Yamamoto, T
    Kumashiro, R
    Tanigaki, K
    [J]. PHYSICAL REVIEW B, 2006, 73 (09)
  • [2] Photophysics and transient nonlinear optical response of donor-[60]fullerene hybrids
    Aloukos, Panagiotis
    Iliopoulos, Konstantinos
    Couris, Stelios
    Guldi, Dirk M.
    Sooambar, Chloe
    Mateo-Alonso, Aurelio
    Nagaswaran, Praveen Ganesh
    Bonifazi, Davide
    Prato, Maurizio
    [J]. JOURNAL OF MATERIALS CHEMISTRY, 2011, 21 (08) : 2524 - 2534
  • [3] n-Type Organic Semiconductors in Organic Electronics
    Anthony, John E.
    Facchetti, Antonio
    Heeney, Martin
    Marder, Seth R.
    Zhan, Xiaowei
    [J]. ADVANCED MATERIALS, 2010, 22 (34) : 3876 - 3892
  • [4] Formation of buckminsterfullerene (C60) in interstellar space
    Berne, Olivier
    Tielens, A. G. G. M.
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2012, 109 (02) : 401 - 406
  • [5] Sintered Fe/CNT framework catalysts for CO2 hydrogenation into hydrocarbons
    Chernyak, Sergei A.
    Ivanov, Anton S.
    Stolbov, Dmitrii N.
    Maksimov, Sergey, V
    Maslakov, Konstantin, I
    Chernavskii, Petr A.
    Pokusaeva, Yana A.
    Koklin, Aleksey E.
    Bogdan, Victor, I
    Savilov, Serguei, V
    [J]. CARBON, 2020, 168 : 475 - 484
  • [6] Chuvilin A, 2010, NAT CHEM, V2, P450, DOI [10.1038/nchem.644, 10.1038/NCHEM.644]
  • [7] Transmutation of fullerenes
    Cross, RJ
    Saunders, M
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2005, 127 (09) : 3044 - 3047
  • [8] FORMATION OF [60]FULLERENE BY PYROLYSIS OF CORANNULENE, 7,10-BIS(2,2'-DIBROMOVINYL)FLUORANTHENE, AND 11,12-BENZOFLUORANTHENE
    CROWLEY, C
    KROTO, HW
    TAYLOR, R
    WALTON, DRM
    BRATCHER, MS
    CHENG, PC
    SCOTT, LT
    [J]. TETRAHEDRON LETTERS, 1995, 36 (50) : 9215 - 9218
  • [9] ON THE FORMATION OF THE FULLERENES
    CURL, RF
    [J]. PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1993, 343 (1667): : 19 - 32
  • [10] Carbon Nanomaterials for Advanced Energy Conversion and Storage
    Dai, Liming
    Chang, Dong Wook
    Baek, Jong-Beom
    Lu, Wen
    [J]. SMALL, 2012, 8 (08) : 1130 - 1166