Using Machine Learning in Psychiatry: The Need to Establish a Framework That Nurtures Trustworthiness

被引:41
作者
Chandler, Chelsea [1 ]
Foltz, Peter W. [2 ,3 ]
Elvevag, Brita [4 ,5 ]
机构
[1] Univ Colorado Boulder, Dept Comp Sci, 430 UCB,1111 Engn Dr, Boulder, CO 80309 USA
[2] Univ Colorado Boulder, Inst Cognit Sci, Boulder, CO USA
[3] Pearson PLC, London, England
[4] Univ Tromso, Dept Clin Med, Tromso, Norway
[5] Norwegian Ctr eHlth Res, Tromso, Norway
关键词
computational psychiatry; artificial intelligence; guidelines; explainability; transparency; generalizability;
D O I
10.1093/schbul/sbz105
中图分类号
R749 [精神病学];
学科分类号
100205 ;
摘要
The rapid embracing of artificial intelligence in psychiatry has a flavor of being the current "wild west"; a multidisciplinary approach that is very technical and complex, yet seems to produce findings that resonate. These studies are hard to review as the methods are often opaque and it is tricky to find the suitable combination of reviewers. This issue will only get more complex in the absence of a rigorous framework to evaluate such studies and thus nurture trustworthiness. Therefore, our paper discusses the urgency of the field to develop a framework with which to evaluate the complex methodology such that the process is done honestly, fairly, scientifically, and accurately. However, evaluation is a complicated process and so we focus on three issues, namely explainability, transparency, and generalizability, that are critical for establishing the viability of using artificial intelligence in psychiatry. We discuss how defining these three issues helps towards building a framework to ensure trustworthiness, but show how difficult definition can be, as the terms have different meanings in medicine, computer science, and law. We conclude that it is important to start the discussion such that there can be a call for policy on this and that the community takes extra care when reviewing clinical applications of such models.
引用
收藏
页码:11 / 14
页数:4
相关论文
共 23 条
  • [1] End-to-end lung cancer screening with three-dimensional deep learning on low-dose chest computed tomography
    Ardila, Diego
    Kiraly, Atilla P.
    Bharadwaj, Sujeeth
    Choi, Bokyung
    Reicher, Joshua J.
    Peng, Lily
    Tse, Daniel
    Etemadi, Mozziyar
    Ye, Wenxing
    Corrado, Greg
    Naidich, David P.
    Shetty, Shravya
    [J]. NATURE MEDICINE, 2019, 25 (06) : 954 - +
  • [2] Association AP., 2013, Diagnostic and Statistical Manual of Mental Disorders, DOI [10.1176/appi.books.9780890425596, 10.1176/appi.books.9780890425596.744053, DOI 10.1176/APPI.BOOKS.9780890425596]
  • [3] Automated analysis of free speech predicts psychosis onset in high-risk youths
    Bedi G.
    Carrillo F.
    Cecchi G.A.
    Slezak D.F.
    Sigman M.
    Mota N.B.
    Ribeiro S.
    Javitt D.C.
    Copelli M.
    Corcoran C.M.
    [J]. npj Schizophrenia, 1 (1):
  • [4] Bolukbasi T, 2016, 30 C NEUR INF PROC S, P4349
  • [5] Towards algorithmic analytics for large-scale datasets
    Bzdok, Danilo
    Nichols, Thomas E.
    Smith, Stephen M.
    [J]. NATURE MACHINE INTELLIGENCE, 2019, 1 (07) : 296 - 306
  • [6] Machine Learning for Precision Psychiatry: Opportunities and Challenges
    Bzdok, Danilo
    Meyer-Lindenberg, Andreas
    [J]. BIOLOGICAL PSYCHIATRY-COGNITIVE NEUROSCIENCE AND NEUROIMAGING, 2018, 3 (03) : 223 - 230
  • [7] Ambulatory Vocal Acoustics, Temporal Dynamics, and Serious Mental Illness
    Cohen, Alex S.
    Fedechko, Taylor L.
    Schwartz, Elana K.
    Le, Thanh P.
    Foltz, Peter W.
    Bernstein, Jared
    Cheng, Jian
    Holmlund, Terje B.
    Elvevag, Brita
    [J]. JOURNAL OF ABNORMAL PSYCHOLOGY, 2019, 128 (02) : 97 - 105
  • [8] Prediction of psychosis across protocols and risk cohorts using automated language analysis
    Corcoran, Cheryl M.
    Carrillo, Facundo
    Fernandez-Slezak, Diego
    Bedi, Gillinder
    Klim, Casimir
    Javitt, Daniel C.
    Bearden, Carrie E.
    Cecchi, Guillermo A.
    [J]. WORLD PSYCHIATRY, 2018, 17 (01): : 67 - 75
  • [9] Dastin J., 2018, Reuters, DOI DOI 10.1017/CBO9781139025751
  • [10] Thoughts About Disordered Thinking: Measuring and Quantifying the Laws of Order and Disorder
    Elvevag, Brita
    Foltz, Peter W.
    Rosenstein, Mark
    Ferrer-i-Cancho, Ramon
    De Deyne, Simon
    Mizraji, Eduardo
    Cohen, Alex
    [J]. SCHIZOPHRENIA BULLETIN, 2017, 43 (03) : 509 - 513