Strong and Plancherel-Rotach asymptotics of non-diagonal Laguerre-Sobolev orthogonal polynomials

被引:12
作者
Marcellán, F [1 ]
Moreno-Balcázar, JJ
机构
[1] Univ Carlos III Madrid, Dept Matemat, E-28903 Getafe, Spain
[2] Univ Almeria, Dept Estadist & Matemat Aplicada, Almeria, Spain
[3] Univ Granada, Inst Carlos I Fis Teor & Computac, Granada, Spain
关键词
Sobolev orthogonal polynomials; Laguerre polynomials; Bessel functions; scaled polynomials; asymptotics; Plancherel-Rotach asymptotics;
D O I
10.1006/jath.2000.3530
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study properties of the monic polynomials {Q(n)}(n is an element ofN) orthogonal with respect to the Sobolev inner product [GRAPHICS] where lambda-mu (2)>0 and alpha> - 1. This inner product can be expressed as (p, q) s = integral (infinity)(o) p(x)q(x)(mu +1) x - alpha mu) x(alpha -1)e(-x) dx+lambda integral (infinity)(o) p' q' x(alpha) e(-x) dx. when alpha >0. In this way, the measure which appears in the first integral is not positive on [0, infinity) for mu is an element of R\ [- 1, 0]. The aim of this pal,er is the study of analytic properties of the polynomials Q(n). First we give an explicit representation for Q(n) using an algebraic relation between Sobolev and Laguerre polynomials together with a recursive relation For (k) over tilde (n) = (Q(n), Q(n))(S). Then we consider analytic aspects. We first establish the strong asymptotics of Q(n) on C\[0, infinity) when mu is an element ofR and we also obtain an asymptotic expression on the oscillatory region. that is. on (0, infinity). Then we study the Plancherel-Rotach asymptotics for the Sobolev polynomials Q(n)(nx) on C\[0, 4] when mu is an element of(-1, 0]. As a consequence of these results we obtain the accumulation sets of zeros and of the scaled zeros of Q(n). We also give a Mehler Heine type formula for the Sobolev polynomials which is valid on compact subsets of C when mu is an element of(-1, 0], and hence in this situation we obtain a more precise result about the asymptotic behaviour of the small zeros of Q(n). This result is illustrated with three numerical examples. (C) 2001 Academic Press.
引用
收藏
页码:54 / 73
页数:20
相关论文
共 10 条
[1]   Zeros and critical points of Sobolev orthogonal polynomials [J].
Gautschi, W ;
Kuijlaars, ABJ .
JOURNAL OF APPROXIMATION THEORY, 1997, 91 (01) :117-137
[2]   RELATIVE ASYMPTOTICS FOR ORTHOGONAL POLYNOMIALS WITH UNBOUNDED RECURRENCE COEFFICIENTS [J].
GERONIMO, JS ;
VANASSCHE, W .
JOURNAL OF APPROXIMATION THEORY, 1990, 62 (01) :47-69
[3]   An asymptotic result for Laguerre-Sobolev orthogonal polynomials [J].
Marcellan, F ;
Meijer, HG ;
Perez, TE ;
Pinar, MA .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1997, 87 (01) :87-94
[4]   Asymptotics of Sobolev orthogonal polynomials for coherent pairs of measures [J].
Martinez-Finkelshtein, A ;
Moreno-Balcazar, JJ ;
Perez, TE ;
Pinar, MA .
JOURNAL OF APPROXIMATION THEORY, 1998, 92 (02) :280-293
[5]   Asymptotic properties of Sobolev orthogonal polynomials [J].
Martinez-Finkelshtein, A .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1998, 99 (1-2) :491-510
[6]   Determination of all coherent pairs [J].
Meijer, HG .
JOURNAL OF APPROXIMATION THEORY, 1997, 89 (03) :321-343
[7]   Analytic properties of nondiagonal Jacobi-Sobolev orthogonal polynomials [J].
Moreno-Balcázar, JJ ;
Martínez-Finkelshtein, A .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1999, 105 (1-2) :393-401
[8]   On sobolev orthogonal polynomials with coherent pairs: The Laguerre case, type 1 [J].
Pan, K .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1998, 223 (01) :319-333
[9]  
SCHAFKE FW, 1973, J REINE ANGEW MATH, V262, P339
[10]  
VANASSCHE W, 1990, NATO ADV SCI I C-MAT, V294, P435