Domain decomposition in the GPU-accelerated Shift Monte Carlo code q

被引:4
|
作者
Hamilton, Steven P. [1 ]
Evans, Thomas M. [1 ]
Royston, Katherine E. [1 ]
Biondo, Elliott D. [1 ]
机构
[1] Oak Ridge Natl Lab, 1 Bethel Valley Rd, Oak Ridge, TN 37831 USA
关键词
Monte Carlo; Domain decomposition; GPU; NEUTRON-TRANSPORT; CAPABILITIES;
D O I
10.1016/j.anucene.2021.108687
中图分类号
TL [原子能技术]; O571 [原子核物理学];
学科分类号
0827 ; 082701 ;
摘要
The GPU solver within the Shift continuous-energy Monte Carlo neutron transport code has been extended to provide domain decomposition in addition to domain replication to enable the solution of problems with memory requirements exceeding the capacity of a single GPU. The strategy follows the Multiple Set, Overlapping Domain (MSOD) approach that is used in Shift's CPU solver and integrates into the event-based algorithm used for Shift's GPU solver. Furthermore, the ability to assign processors to spatial domains non-uniformly has been maintained. Two different approaches for communicating particle data between domains are considered, and multiple criteria for load balancing problems have been investigated. Numerical results are presented for both fresh and depleted small modular nuclear reactor (SMR) cores. A parallel efficiency of approximately 80% was achieved with up to 16 spatial domains measured relative to full domain replication. A scaling study on the Summit supercomputer demonstrates a weak scaling parallel efficiency of over 90% on over 24000 GPUs. (c) 2021 Elsevier Ltd. All rights reserved.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] GPU-Accelerated Neural Network Potential Energy Surfaces for Diffusion Monte Carlo
    DiRisio, Ryan J.
    Lu, Fenris
    McCoy, Anne B.
    JOURNAL OF PHYSICAL CHEMISTRY A, 2021, 125 (26): : 5849 - 5859
  • [22] Implementation of a Static and Dynamic MLC Model in a GPU-Accelerated Monte Carlo Engine
    Brost, E.
    Tseung, H.
    Antolak, J.
    MEDICAL PHYSICS, 2022, 49 (06) : E909 - E909
  • [23] GPU-accelerated Monte Carlo based scatter correction in brain PET/MR
    Michaela Gaens
    Julien Bert
    Uwe Pietrzyk
    A Autret
    N Jon Shah
    Dimitris Visvikis
    EJNMMI Physics, 1 (Suppl 1)
  • [24] GPU-accelerated Monte-Carlo modeling for fluorescence propagation in turbid medium
    Yi, Xi
    Chen, Weiting
    Wu, Linhui
    Ma, Wenjuan
    Zhang, Wei
    Li, Jiao
    Wang, Xin
    Gao, Feng
    MULTIMODAL BIOMEDICAL IMAGING VII, 2012, 8216
  • [25] GPU-ACCELERATED AND CPU SIMD OPTIMIZED MONTE CARLO SIMULATION OF φ4 MODEL
    Bialas, Piotr
    Kowal, Jakub
    Strzelecki, Adam
    COMPUTING AND INFORMATICS, 2014, 33 (05) : 1191 - 1208
  • [26] Fred: a GPU-accelerated fast-Monte Carlo code for rapid treatment plan recalculation in ion beam therapy
    Schiavi, A.
    Senzacqua, M.
    Pioli, S.
    Mairani, A.
    Magro, G.
    Molinelli, S.
    Ciocca, M.
    Battistoni, G.
    Patera, V.
    PHYSICS IN MEDICINE AND BIOLOGY, 2017, 62 (18): : 7482 - 7504
  • [27] A GPU-Accelerated Monte Carlo Dose Computation Engine for Precision Small Animal Radiotherapy
    Liu, Z.
    Yang, Y.
    MEDICAL PHYSICS, 2022, 49 (06) : E494 - E494
  • [28] A methodology on time-domain fluorescence diffuse optical tomography based on GPU-accelerated Monte-Carlo modeling
    Yi, Xi
    Wu, Linhui
    Wang, Xin
    Chen, Weiting
    Zhang, Limin
    Zhao, Huijuan
    Gao, Feng
    Zhongguo Jiguang/Chinese Journal of Lasers, 2013, 40 (05):
  • [29] Validation of a GPU-Accelerated Monte Carlo Treatment Planning System for Proton Beam Therapy
    Rucinski, A.
    Battistoni, G.
    Gora, E.
    Durante, M.
    Gajewski, J.
    Garbacz, M.
    Kisielewicz, K.
    Krah, N.
    Patera, V.
    Rinaldi, I.
    Sas-Korczynska, B.
    Skora, T.
    Skrzypek, A.
    Tommasino, F.
    Scifoni, E.
    Schiavi, A.
    MEDICAL PHYSICS, 2018, 45 (06) : E261 - E261
  • [30] A GPU-Accelerated Monte Carlo Engine for Calculation of MLC-Collimated Electron Fields
    Brost, E.
    Tseung, H. Wan Chan
    Antolak, J.
    MEDICAL PHYSICS, 2021, 48 (06)