Domain decomposition in the GPU-accelerated Shift Monte Carlo code q

被引:4
|
作者
Hamilton, Steven P. [1 ]
Evans, Thomas M. [1 ]
Royston, Katherine E. [1 ]
Biondo, Elliott D. [1 ]
机构
[1] Oak Ridge Natl Lab, 1 Bethel Valley Rd, Oak Ridge, TN 37831 USA
关键词
Monte Carlo; Domain decomposition; GPU; NEUTRON-TRANSPORT; CAPABILITIES;
D O I
10.1016/j.anucene.2021.108687
中图分类号
TL [原子能技术]; O571 [原子核物理学];
学科分类号
0827 ; 082701 ;
摘要
The GPU solver within the Shift continuous-energy Monte Carlo neutron transport code has been extended to provide domain decomposition in addition to domain replication to enable the solution of problems with memory requirements exceeding the capacity of a single GPU. The strategy follows the Multiple Set, Overlapping Domain (MSOD) approach that is used in Shift's CPU solver and integrates into the event-based algorithm used for Shift's GPU solver. Furthermore, the ability to assign processors to spatial domains non-uniformly has been maintained. Two different approaches for communicating particle data between domains are considered, and multiple criteria for load balancing problems have been investigated. Numerical results are presented for both fresh and depleted small modular nuclear reactor (SMR) cores. A parallel efficiency of approximately 80% was achieved with up to 16 spatial domains measured relative to full domain replication. A scaling study on the Summit supercomputer demonstrates a weak scaling parallel efficiency of over 90% on over 24000 GPUs. (c) 2021 Elsevier Ltd. All rights reserved.
引用
收藏
页数:14
相关论文
共 50 条
  • [11] GPU-accelerated Monte Carlo convolution/superposition implementation for dose calculation
    Zhou, Bo
    Yu, Cedric X.
    Chen, Danny Z.
    Hu, X. Sharon
    MEDICAL PHYSICS, 2010, 37 (11) : 5593 - 5603
  • [12] Exploring Numba and CuPy for GPU-Accelerated Monte Carlo Radiation Transport
    Askar, Tair
    Yergaliyev, Argyn
    Shukirgaliyev, Bekdaulet
    Abdikamalov, Ernazar
    COMPUTATION, 2024, 12 (03)
  • [13] A GPU-accelerated Monte Carlo code, RT2 for coupled transport of photon, electron/positron, and neutron
    Lee, Chang-Min
    Ye, Sung-Joon
    PHYSICS IN MEDICINE AND BIOLOGY, 2024, 69 (17):
  • [14] Fast and Accurate Estimation of Organ Doses in Medical Imaging Using a GPU-Accelerated Monte Carlo Simulation Code
    Badal, A.
    Badano, A.
    MEDICAL PHYSICS, 2011, 38 (06)
  • [15] A GPU-accelerated Monte Carlo dose computation engine for small animal radiotherapy
    Liu, Zihao
    Zheng, Cheng
    Zhao, Ning
    Huang, Yunwen
    Chen, Jiahao
    Yang, Yidong
    MEDICAL PHYSICS, 2023, 50 (08) : 5238 - 5247
  • [16] GPU-accelerated Monte Carlo Based Scatter Correction in Brain PET/MR
    Gaens, Michaela
    Bert, Julien
    Pietrzyk, Uwe
    Shah, N. Jon
    Visvikis, Dimitris
    2013 IEEE NUCLEAR SCIENCE SYMPOSIUM AND MEDICAL IMAGING CONFERENCE (NSS/MIC), 2013,
  • [17] GPU-accelerated Monte Carlo simulation of electron and photon interactions for radiotherapy applications
    Franciosini, G.
    Battistoni, G.
    Cerqua, A.
    De Gregorio, A.
    De Maria, P.
    De Simoni, M.
    Dong, Y.
    Fischetti, M.
    Marafini, M.
    Mirabelli, R.
    Muscato, A.
    Patera, V
    Salvati, F.
    Sarti, A.
    Sciubba, A.
    Toppi, M.
    Traini, G.
    Trigilio, A.
    Schiavi, A.
    PHYSICS IN MEDICINE AND BIOLOGY, 2023, 68 (04):
  • [18] GPU-accelerated Gibbs ensemble Monte Carlo simulations of Lennard-Jonesium
    Mick, Jason
    Hailat, Eyad
    Russo, Vincent
    Rushaidat, Kamel
    Schwiehert, Loren
    Potoff, Jeffrey
    COMPUTER PHYSICS COMMUNICATIONS, 2013, 184 (12) : 2662 - 2669
  • [19] GPU-accelerated Monte Carlo simulation of particle coagulation based on the inverse method
    Wei, J.
    Kruis, F. E.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2013, 249 : 67 - 79
  • [20] GPU-Accelerated Monte Carlo Simulation for a Single-Photon Underwater Lidar
    Liao, Yupeng
    Shangguan, Mingjia
    Yang, Zhifeng
    Lin, Zaifa
    Wang, Yuanlun
    Li, Sihui
    REMOTE SENSING, 2023, 15 (21)