Normally-OFF Diamond Reverse Blocking MESFET

被引:8
作者
Canas, J. [1 ,2 ]
Pakpour-Tabrizi, A. C. [3 ,4 ]
Trajkovic, T. [5 ]
Udrea, F. [6 ]
Eon, D. [1 ]
Gheeraert, E. [1 ]
Jackman, R. B. [3 ,4 ]
机构
[1] Univ Grenoble Alpes, CNRS, Grenoble INP, Inst NEEL, F-38042 Grenoble, France
[2] Univ Cadiz, Dept Mat Sci & Met Engn, Cadiz 11003, Spain
[3] Univ Coll London UCL, London Ctr Nanotechnol, London WC1H 0AH, England
[4] Univ Coll London UCL, Dept Elect & Elect Engn, London WC1H 0AH, England
[5] Cambridge Microelect Ltd, Cambridge CB3 0QH, England
[6] Univ Cambridge, Dept Engn, Cambridge CB3 0FA, England
基金
英国工程与自然科学研究理事会; 欧盟地平线“2020”;
关键词
Diamond; MESFET; molybdenum; Schottky; BREAKDOWN VOLTAGE;
D O I
10.1109/TED.2021.3117237
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Schottky contacts have been used to fabricate normally-(OFF) lateral reverse-blocking MESFETs on p-type (boron-doped) O-terminated monocrystalline diamond. The devices utilized an ohmic source contact but both gate and drain contacts were Schottky in nature. Boron-doped p-channel diamond MESFETs reported to date display the less attractive normally-(ON) characteristics. Here, the normally-(OFF) transistor delivered a current level of similar to 1.5 mu Amm(-1) at a negative V-GS of 0.8 V and a transconductance (g(m)) of 16 mu Smm(-1), measured at room temperature (RT); at a temperature of 425 K, these values rose to similar to 70 mu Amm(-1) for /Ds and a g(m) value of 260 mu Smm(-1). In both cases, a negligible gate leakage current was measured with no breakdown apparent at the maximum field investigated here (3.7 x 10(5) V/m(-1)). The Schottky gate demonstrates a well-behaved control of the channel even at higher temperatures. The high-temperature operation, normally-(OFF) behavior, and diamond's inherent radiation hardness make this transistor promising for harsh environment applications.
引用
收藏
页码:6279 / 6285
页数:7
相关论文
共 37 条
  • [21] Deep depletion concept for diamond MOSFET
    Pham, T. T.
    Rouger, N.
    Masante, C.
    Chicot, G.
    Udrea, F.
    Eon, D.
    Gheeraert, E.
    Pernot, J.
    [J]. APPLIED PHYSICS LETTERS, 2017, 111 (17)
  • [22] Performance of H-diamond MOSFETs with high temperature ALD grown HfO2 dielectric
    Ren, Zeyang
    Lv, Dandan
    Xu, Jiamin
    Su, Kai
    Zhang, Jinfeng
    Wang, Dong
    Wu, Yong
    Zhang, Jincheng
    Hao, Yue
    [J]. DIAMOND AND RELATED MATERIALS, 2020, 106
  • [23] Surface conductive layers on oxidized (111) diamonds
    Ri, SG
    Takeuchi, D
    Kato, H
    Ogura, M
    Makino, T
    Yamasaki, S
    Okushi, H
    Rezek, B
    Nebel, CE
    [J]. APPLIED PHYSICS LETTERS, 2005, 87 (26) : 1 - 3
  • [24] Charge-carrier mobility in hydrogen-terminated diamond field-effect transistors
    Sasama, Yosuke
    Kageura, Taisuke
    Komatsu, Katsuyoshi
    Moriyama, Satoshi
    Inoue, Jun-ichi
    Imura, Masataka
    Watanabe, Kenji
    Taniguchi, Takashi
    Uchihashi, Takashi
    Takahide, Yamaguchi
    [J]. JOURNAL OF APPLIED PHYSICS, 2020, 127 (18)
  • [25] High-mnkility diamond field effect transistorwith a monocrystalline h-BN gate dielectric
    Sasama, Yosuke
    Komatsu, Katsuyoshi
    Moriyama, Satoshi
    Imura, Masataka
    Teraji, Tokuyuki
    Watanabe, Kenji
    Taniguchi, Takashi
    Uchihashi, Takashi
    Takahide, Yamaguchi
    [J]. APL MATERIALS, 2018, 6 (11):
  • [26] Sze S.M., 2007, Physics of Semiconductors
  • [27] The boron acceptor in diamond
    Thonke, K
    [J]. SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 2003, 18 (03) : S20 - S26
  • [28] Umezawa Hitoshi, 2017, 2017 29th International Symposium on Power Semiconductor Devices and ICs (ISPSD). Proceedings, P379, DOI 10.23919/ISPSD.2017.7988983
  • [29] Leakage current analysis of diamond Schottky barrier diode
    Umezawa, Hitoshi
    Saito, Takeyasu
    Tokuda, Norio
    Ogura, Masahiko
    Ri, Sung-Gi
    Yoshikawa, Hiromichi
    Shikata, Shin-ichi
    [J]. APPLIED PHYSICS LETTERS, 2007, 90 (07)
  • [30] Diamond Metal-Semiconductor Field-Effect Transistor With Breakdown Voltage Over 1.5 kV
    Umezawa, Hitoshi
    Matsumoto, Takeshi
    Shikata, Shin-Ichi
    [J]. IEEE ELECTRON DEVICE LETTERS, 2014, 35 (11) : 1112 - 1114