Normally-OFF Diamond Reverse Blocking MESFET

被引:8
作者
Canas, J. [1 ,2 ]
Pakpour-Tabrizi, A. C. [3 ,4 ]
Trajkovic, T. [5 ]
Udrea, F. [6 ]
Eon, D. [1 ]
Gheeraert, E. [1 ]
Jackman, R. B. [3 ,4 ]
机构
[1] Univ Grenoble Alpes, CNRS, Grenoble INP, Inst NEEL, F-38042 Grenoble, France
[2] Univ Cadiz, Dept Mat Sci & Met Engn, Cadiz 11003, Spain
[3] Univ Coll London UCL, London Ctr Nanotechnol, London WC1H 0AH, England
[4] Univ Coll London UCL, Dept Elect & Elect Engn, London WC1H 0AH, England
[5] Cambridge Microelect Ltd, Cambridge CB3 0QH, England
[6] Univ Cambridge, Dept Engn, Cambridge CB3 0FA, England
基金
英国工程与自然科学研究理事会; 欧盟地平线“2020”;
关键词
Diamond; MESFET; molybdenum; Schottky; BREAKDOWN VOLTAGE;
D O I
10.1109/TED.2021.3117237
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Schottky contacts have been used to fabricate normally-(OFF) lateral reverse-blocking MESFETs on p-type (boron-doped) O-terminated monocrystalline diamond. The devices utilized an ohmic source contact but both gate and drain contacts were Schottky in nature. Boron-doped p-channel diamond MESFETs reported to date display the less attractive normally-(ON) characteristics. Here, the normally-(OFF) transistor delivered a current level of similar to 1.5 mu Amm(-1) at a negative V-GS of 0.8 V and a transconductance (g(m)) of 16 mu Smm(-1), measured at room temperature (RT); at a temperature of 425 K, these values rose to similar to 70 mu Amm(-1) for /Ds and a g(m) value of 260 mu Smm(-1). In both cases, a negligible gate leakage current was measured with no breakdown apparent at the maximum field investigated here (3.7 x 10(5) V/m(-1)). The Schottky gate demonstrates a well-behaved control of the channel even at higher temperatures. The high-temperature operation, normally-(OFF) behavior, and diamond's inherent radiation hardness make this transistor promising for harsh environment applications.
引用
收藏
页码:6279 / 6285
页数:7
相关论文
共 37 条
  • [1] Boron-doped homoepitaxial diamond layers: Fabrication, characterization, and electronic applications
    Borst, TH
    Weis, O
    [J]. PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE, 1996, 154 (01): : 423 - 444
  • [2] 2D hole gas mobility at diamond/insulator interface
    Daligou, G.
    Pernot, J.
    [J]. APPLIED PHYSICS LETTERS, 2020, 116 (16)
  • [3] High quality gate dielectric/MoS2 interfaces probed by the conductance method
    Dev, Durjoy
    Krishnaprasad, Adithi
    Kalita, Hirokjyoti
    Das, Sonali
    Rodriguez, Victor
    Flores, Jean Calderon
    Zhai, Lei
    Roy, Tania
    [J]. APPLIED PHYSICS LETTERS, 2018, 112 (23)
  • [4] Diamond power devices: state of the art, modelling, figures of merit and future perspective
    Donato, N.
    Rouger, N.
    Pernot, J.
    Longobardi, G.
    Udrea, F.
    [J]. JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2020, 53 (09)
  • [5] Comparison of methods to quantify interface trap densities at dielectric/III-V semiconductor interfaces
    Engel-Herbert, Roman
    Hwang, Yoontae
    Stemmer, Susanne
    [J]. JOURNAL OF APPLIED PHYSICS, 2010, 108 (12)
  • [6] ON SUBSTITUTIONAL NITROGEN DONOR IN DIAMOND
    FARRER, RG
    [J]. SOLID STATE COMMUNICATIONS, 1969, 7 (09) : 685 - +
  • [7] Kawarada H, 2016, INT SYM POW SEMICOND, P483, DOI 10.1109/ISPSD.2016.7520883
  • [8] Normally-Off C-H Diamond MOSFETs With Partial C-O Channel Achieving 2-kV Breakdown Voltage
    Kitabayashi, Yuya
    Kudo, Takuya
    Tsuboi, Hidetoshi
    Yamada, Tetsuya
    Xu, Dechen
    Shibata, Masanobu
    Matsumura, Daisuke
    Hayashi, Yuya
    Syamsul, Mohd
    Inaba, Masafumi
    Hiraiwa, Atsushi
    Kawarada, Hiroshi
    [J]. IEEE ELECTRON DEVICE LETTERS, 2017, 38 (03) : 363 - 366
  • [9] Effect of Annealing Temperature on Performances of Boron-Doped Diamond Metal-Semiconductor Field-Effect Transistors
    Liu, Jiangwei
    Teraji, Tokuyuki
    Da, Bo
    Ohsato, Hirotaka
    Koide, Yasuo
    [J]. IEEE TRANSACTIONS ON ELECTRON DEVICES, 2020, 67 (04) : 1680 - 1685
  • [10] High Output Current Boron-Doped Diamond Metal-Semiconductor Field-Effect Transistors
    Liu, Jiangwei
    Teraji, Tokuyuki
    Da, Bo
    Koide, Yasuo
    [J]. IEEE ELECTRON DEVICE LETTERS, 2019, 40 (11) : 1748 - 1751