Shallow-water sloshing motions in rectangular tank in general motions based on Boussinesq-type equations

被引:4
作者
Su, Yan [1 ,2 ]
Liu, Zu-yuan [2 ]
Gao, Zhi-liang [2 ]
机构
[1] Wuhan Univ Technol, Key Lab High Performance Ship Technol, Minist Educ, Wuhan 430063, Hubei, Peoples R China
[2] Wuhan Univ Technol, Sch Transportat, Wuhan 430063, Hubei, Peoples R China
基金
中国国家自然科学基金;
关键词
Sloshing; shallow-water; Boussinesq-type equations; BREAKING; BASINS; MODEL;
D O I
10.1007/s42241-018-0098-2
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
Based on the highly accurate Boussinesq-type equations in terms of velocity potential, the shallow-water sloshing in a two-dimensional rectangular tank is studied. The rectangular tank in harmonic sway, heave and roll motions with small excitation amplitudes is considered. The total velocity potential is divided into two parts: the particular solution and the remaining part to be determined by the Boussinesq-type equations. The Stokes-Joukowski potential is adopted in the particular solution for the roll excitation motion. The comparisons of the numerical results indicate that the shallow-water sloshing motions in a rectangular tank can be predicted well based on the Boussinesq-type equations.
引用
收藏
页码:958 / 961
页数:4
相关论文
共 12 条
  • [1] [Anonymous], 2002, P INT C INT MAR ASS
  • [2] Two-dimensional modal method for shallow-water sloshing in rectangular basins
    Antuono, M.
    Bouscasse, B.
    Colagrossi, A.
    Lugni, C.
    [J]. JOURNAL OF FLUID MECHANICS, 2012, 700 : 419 - 440
  • [3] Velocity potential formulations of highly accurate Boussinesq-type models
    Bingham, Harry B.
    Madsen, Per A.
    Fuhrman, David R.
    [J]. COASTAL ENGINEERING, 2009, 56 (04) : 467 - 478
  • [4] Soliton solutions for Boussinesq-like equations with spatio-temporal dispersion
    Darvishi, M. T.
    Najafi, M.
    Wazwaz, A. M.
    [J]. OCEAN ENGINEERING, 2017, 130 : 228 - 240
  • [5] Faltinsen O., 2009, Sloshing
  • [6] Numerical simulation of wave transformation, breaking and runup by a contravariant fully non-linear Boussinesq equations model
    Gallerano, F.
    Cannata, G.
    Lasaponara, F.
    [J]. JOURNAL OF HYDRODYNAMICS, 2016, 28 (03) : 379 - 388
  • [7] Transient and steady-state amplitudes of forced waves in rectangular basins
    Hill, DF
    [J]. PHYSICS OF FLUIDS, 2003, 15 (06) : 1576 - 1587
  • [8] Ibrahim RA, 2005, LIQUID SLOSHING DYNAMICS: THEORY AND APPLICATIONS, P1, DOI 10.1017/CBO9780511536656
  • [9] A numerical study of nonlinear wave run-up on a vertical plate
    Jamois, Eric
    Fuhrman, David R.
    Bingham, Harry B.
    Molin, Bernard
    [J]. COASTAL ENGINEERING, 2006, 53 (11) : 929 - 945
  • [10] Coupling effects of barge motion and sloshing
    Su, Yan
    Liu, Z. Y.
    [J]. OCEAN ENGINEERING, 2017, 140 : 352 - 360