Multiomics landscape of the autosomal dominant osteopetrosis type II disease-specific induced pluripotent stem cells

被引:3
作者
Li, Chunhong [1 ]
Yu Shangguan [2 ,3 ]
Zhu, Peng [2 ]
Dai, Weier [4 ]
Tang, Donge [2 ]
Ou, Minglin [1 ]
Dai, Yong [2 ]
机构
[1] Guilin Med Univ, Affiliated Hosp 2, Guangxi Hlth Commiss Key Lab Glucose & Lipid Meta, Cent Lab, Guilin 541199, Guangxi, Peoples R China
[2] Southern Univ Sci & Technol, Shenzhen Peoples Hosp, Affiliated Hosp 1,Jinan Univ,Clin Med Coll 2,Shen, Clin Med Res Ctr,Guangdong Prov Engn Res Ctr Auto, Shenzhen 518020, Guangdong, Peoples R China
[3] 924 Hosp, Cent Lab Guilin, Guangxi Key Lab Metab Dis Res, Guilin 541002, Peoples R China
[4] Univ Texas Austin, Coll Nat Sci, Austin, TX 78712 USA
基金
美国国家科学基金会; 中国国家自然科学基金;
关键词
Osteopetrosis; Osteoclast; Whole genome sequencing; DNA methylation; N6-methyladenosine; IDENTIFICATION; BONE; TRANSCRIPTOME; METHYLATION; EXPRESSION; ALIGNMENT; SEVERITY; PACKAGE; GENES;
D O I
10.1186/s41065-021-00204-x
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Background Autosomal dominant osteopetrosis type II (ADO2) is a genetically and phenotypically metabolic bone disease, caused by osteoclast abnormalities. The pathways dysregulated in ADO2 could lead to the defects in osteoclast formation and function. However, the mechanism remains elusive. Materials and methods To systematically explore the molecular characterization of ADO2, we performed a multi-omics profiling from the autosomal dominant osteopetrosis type II iPSCs (ADO2-iPSCs) and healthy normal control iPSCs (NC-iPSCs) using whole genome re-sequencing, DNA methylation and N6-methyladenosine (m6A) analysis in this study. Results Totally, we detected 7,095,817 single nucleotide polymorphisms (SNPs) and 1,179,573 insertion and deletions (InDels), 1,001,943 differentially methylated regions (DMRs) and 2984 differential m6A peaks, and the comprehensive multi-omics profile was generated from the two cells. Interestingly, the ISG15 m6A level in ADO2-iPSCs is higher than NC-iPSCs by IGV software, and the differentially expressed m6A-modified genes (DEMGs) were highly enriched in the osteoclast differentiation and p53 signaling pathway, which associated with the development of osteopetrosis. In addition, combining our previously published transcriptome and proteome datasets, we found that the change in DNA methylation levels correlates inversely with some gene expression levels. Conclusion Our results indicate that the global multi-omics landscape not only provides a high-quality data resource but also reveals a dynamic pattern of gene expression, and found that the pathogenesis of ADO2 may begin early in life.
引用
收藏
页数:15
相关论文
共 52 条
[1]   Phenotypic severity of autosomal dominant osteopetrosis type II (ADO2) mice on different genetic backgrounds recapitulates the features of human disease [J].
Alam, Imranul ;
McQueen, Arnie K. ;
Acton, Dena ;
Reilly, Austin M. ;
Gerard-O'Riley, Rita L. ;
Oakes, Dana K. ;
Kasipathi, Charishma ;
Huffer, Abigail ;
Wright, Weston B. ;
Econs, Michael J. .
BONE, 2017, 94 :34-41
[2]   Generation of the first autosomal dominant osteopetrosis type II (ADO2) disease models [J].
Alam, Imranul ;
Gray, Amie K. ;
Chu, Kang ;
Ichikawa, Shoji ;
Mohammad, Khalid S. ;
Capannolo, Marta ;
Capulli, Mattia ;
Maurizi, Antonio ;
Muraca, Maurizio ;
Teti, Anna ;
Econs, Michael J. ;
Del Fattore, Andrea .
BONE, 2014, 59 :66-75
[3]   Control of bone formation by the serpentine receptor Frizzled-9 [J].
Albers, Joachim ;
Schulze, Jochen ;
Beil, F. Timo ;
Gebauer, Matthias ;
Baranowsky, Anke ;
Keller, Johannes ;
Marshall, Robert P. ;
Wintges, Kristofer ;
Friedrich, Felix W. ;
Priemel, Matthias ;
Schilling, Arndt F. ;
Rueger, Johannes M. ;
Cornils, Kerstin ;
Fehse, Boris ;
Streichert, Thomas ;
Sauter, Guido ;
Jakob, Franz ;
Insogna, Karl L. ;
Pober, Barbara ;
Knobeloch, Klaus-Peter ;
Francke, Uta ;
Amling, Michael ;
Schinke, Thorsten .
JOURNAL OF CELL BIOLOGY, 2011, 192 (06) :1057-1072
[4]   MEME SUITE: tools for motif discovery and searching [J].
Bailey, Timothy L. ;
Boden, Mikael ;
Buske, Fabian A. ;
Frith, Martin ;
Grant, Charles E. ;
Clementi, Luca ;
Ren, Jingyuan ;
Li, Wilfred W. ;
Noble, William S. .
NUCLEIC ACIDS RESEARCH, 2009, 37 :W202-W208
[5]   Identification of Regulatory Networks in HSCs and Their Immediate Progeny via Integrated Proteome, Transcriptome, and DNA Methylome Analysis [J].
Cabezas-Wallscheid, Nina ;
Klimmeck, Daniel ;
Hansson, Jenny ;
Lipka, Daniel B. ;
Reyes, Alejandro ;
Wang, Qi ;
Weichenhan, Dieter ;
Lier, Amelie ;
von Paleske, Lisa ;
Renders, Simon ;
Wuensche, Peer ;
Zeisberger, Petra ;
Brocks, David ;
Gu, Lei ;
Herrmann, Carl ;
Haas, Simon ;
Essers, Marieke A. G. ;
Brors, Benedikt ;
Eils, Roland ;
Huber, Wolfgang ;
Milsom, Michael D. ;
Plass, Christoph ;
Krijgsveld, Jeroen ;
Trumpp, Andreas .
CELL STEM CELL, 2014, 15 (04) :507-522
[6]   C1cn7F318L/+ as a new mouse model of Albers-Schonberg disease [J].
Caetano-Lopes, J. ;
Lessard, S. G. ;
Hann, S. ;
Espinoza, K. ;
Kang, K. S. ;
Lim, K. E. ;
Horan, D. J. ;
Noonan, H. R. ;
Hu, D. ;
Baron, R. ;
Robling, A. G. ;
Warman, M. L. .
BONE, 2017, 105 :253-261
[7]  
Capulli M, 2015, 7 INT C CHILDR 2015
[8]   Quantitative proteomic analysis of induced pluripotent stem cells derived from a human Huntington's disease patient [J].
Chae, Jung-Il ;
Kim, Dong-Wook ;
Lee, Nayeon ;
Jeon, Young-Joo ;
Jeon, Iksoo ;
Kwon, Jihye ;
Kim, Jumi ;
Soh, Yunjo ;
Lee, Dong-Seok ;
Seo, Kang Seok ;
Choi, Nag-Jin ;
Park, Byoung Chul ;
Kang, Sung Hyun ;
Ryu, Joohyun ;
Oh, Seung-Hun ;
Shin, Dong Ah ;
Lee, Dong Ryul ;
Do, Jeong Tae ;
Park, In-Hyun ;
Daley, George Q. ;
Song, Jihwan .
BIOCHEMICAL JOURNAL, 2012, 446 :359-371
[9]   WALT: fast and accurate read mapping for bisulfite sequencing [J].
Chen, Haifeng ;
Smith, Andrew D. ;
Chen, Ting .
BIOINFORMATICS, 2016, 32 (22) :3507-3509
[10]   Identification of microRNAs and their target genes in Alport syndrome using deep sequencing of iPSCs samples [J].
Chen, Wen-biao ;
Huang, Jian-rong ;
Yu, Xiang-qi ;
Lin, Xiao-cong ;
Dai, Yong .
JOURNAL OF ZHEJIANG UNIVERSITY-SCIENCE B, 2015, 16 (03) :235-250