Automated Detection of Congenital Heart Disease in Fetal Ultrasound Screening

被引:10
作者
Tan, Jeremy [1 ]
Au, Anselm [1 ]
Meng, Qingjie
FinesilverSmith, Sandy [2 ]
Simpson, John [2 ]
Rueckert, Daniel [1 ]
Razavi, Reza [2 ]
Day, Thomas [2 ]
Lloyd, David [2 ]
Kainz, Bernhard [1 ]
机构
[1] Imperial Coll London, London SW7 2AZ, England
[2] Kings Coll London, St Thomas Hosp, London SE1 7EH, England
来源
MEDICAL ULTRASOUND, AND PRETERM, PERINATAL AND PAEDIATRIC IMAGE ANALYSIS, ASMUS 2020, PIPPI 2020 | 2020年 / 12437卷
基金
英国惠康基金;
关键词
Congenital heart disease; Fetal ultrasound; PRENATAL DETECTION; LOCALIZATION;
D O I
10.1007/978-3-030-60334-2_24
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Prenatal screening with ultrasound can lower neonatal mortality significantly for selected cardiac abnormalities. However, the need for human expertise, coupled with the high volume of screening cases, limits the practically achievable detection rates. In this paper we discuss the potential for deep learning techniques to aid in the detection of congenital heart disease (CHD) in fetal ultrasound. We propose a pipeline for automated data curation and classification. During both training and inference, we exploit an auxiliary view classification task to bias features toward relevant cardiac structures. This bias helps to improve in F1-scores from 0.72 and 0.77 to 0.87 and 0.85 for healthy and CHD classes respectively.
引用
收藏
页码:243 / 252
页数:10
相关论文
共 22 条
[1]  
Arnaout R, 2018, Arxiv, DOI arXiv:1809.06993
[2]   SonoNet: Real-Time Detection and Localisation of Fetal Standard Scan Planes in Freehand Ultrasound [J].
Baumgartner, Christian F. ;
Kamnitsas, Konstantinos ;
Matthew, Jacqueline ;
Fletcher, Tara P. ;
Smith, Sandra ;
Koch, Lisa M. ;
Kainz, Bernhard ;
Rueckert, Daniel .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2017, 36 (11) :2204-2215
[3]   Accuracy of four-dimensional spatiotemporal image correlation echocardiography in the prenatal diagnosis of congenital heart defects [J].
Bennasar, M. ;
Martinez, J. M. ;
Gomez, O. ;
Bartrons, J. ;
Olivella, A. ;
Puerto, B. ;
Gratacos, E. .
ULTRASOUND IN OBSTETRICS & GYNECOLOGY, 2010, 36 (04) :458-464
[4]   Multi-task SonoEyeNet: Detection of Fetal Standardized Planes Assisted by Generated Sonographer Attention Maps [J].
Cai, Yifan ;
Sharma, Harshita ;
Chatelain, Pierre ;
Noble, J. Alison .
MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2018, PT I, 2018, 11070 :871-879
[5]   Multitask learning [J].
Caruana, R .
MACHINE LEARNING, 1997, 28 (01) :41-75
[6]   3D Fetal Skull Reconstruction from 2DUS via Deep Conditional Generative Networks [J].
Cerrolaza, Juan J. ;
Li, Yuanwei ;
Biffi, Carlo ;
Gomez, Alberto ;
Sinclair, Matthew ;
Matthew, Jacqueline ;
Knight, Caronline ;
Kainz, Bernhard ;
Rueckert, Daniel .
MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2018, PT I, 2018, 11070 :383-391
[7]   Standard Plane Localization in Fetal Ultrasound via Domain Transferred Deep Neural Networks [J].
Chen, Hao ;
Ni, Dong ;
Qin, Jing ;
Li, Shengli ;
Yang, Xin ;
Wang, Tianfu ;
Heng, Pheng Ann .
IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2015, 19 (05) :1627-1636
[8]  
Gal Y, 2016, PR MACH LEARN RES, V48
[9]   Multi-Task Learning Using Uncertainty to Weigh Losses for Scene Geometry and Semantics [J].
Kendall, Alex ;
Gal, Yarin ;
Cipolla, Roberto .
2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, :7482-7491
[10]   Machine-learning-based automatic identification of fetal abdominal circumference from ultrasound images [J].
Kim, Bukweon ;
Kim, Kang Cheol ;
Park, Yejin ;
Kwon, Ja-Young ;
Jang, Jaeseong ;
Seo, Jin Keun .
PHYSIOLOGICAL MEASUREMENT, 2018, 39 (10)