THE CAUCHY PROBLEM ON LARGE TIME FOR SURFACE-WAVES-TYPE BOUSSINESQ SYSTEMS II

被引:34
作者
Saut, Jean-Claude [1 ,2 ]
Wang, Chao [3 ]
Xu, Li [4 ]
机构
[1] Univ Paris 11, Lab Math, UMR 8628, F-91405 Orsay, France
[2] CNRS, F-91405 Orsay, France
[3] Peking Univ, Sch Math Sci, Beijing 100871, Peoples R China
[4] Chinese Acad Sci, LSEC, Inst Computat Math, Acad Math & Syst Sci, Beijing 100190, Peoples R China
关键词
Bousinesq systems; Cauchy problem; long time existence; NONLINEAR DISPERSIVE MEDIA; AMPLITUDE LONG WAVES; WATER-WAVES; WELL-POSEDNESS; INTERNAL WAVES; BENJAMIN-ONO; EQUATIONS; EXISTENCE; MODELS; PERTURBATIONS;
D O I
10.1137/15M1050203
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is a continuation of a previous work by two of the authors [J.-C. Saut and Li Xu, T. Math. Pures Appl. (9), 97 (2012), pp. 635-662.] on long time existence for Boussinesq systems modeling the propagation of long, weakly nonlinear water waves. We provide proofs on examples not considered in the Sant and Xu paper; in particular, we prove a long time well-posedness result for a delicate "strongly dispersive" Boussinesq system.
引用
收藏
页码:2321 / 2386
页数:66
相关论文
共 45 条
[11]   MODEL FOR 2-WAY PROPAGATION OF WATER WAVES IN A CHANNEL [J].
BONA, JL ;
SMITH, R .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1976, 79 (JAN) :167-182
[12]   INITIAL-VALUE PROBLEM FOR KORTEWEG-DEVRIES EQUATION [J].
BONA, JL ;
SMITH, R .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1975, 278 (1287) :555-601
[13]   New long time existence results for a class of Boussinesq-type systems [J].
Burtea, Cosmin .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2016, 106 (02) :203-236
[14]   Fully nonlinear long-wave models in the presence of vorticity [J].
Castro, Angel ;
Lannes, David .
JOURNAL OF FLUID MECHANICS, 2014, 759 :642-675
[15]   Influence of bottom topography on long water waves [J].
Chazel, Florent .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2007, 41 (04) :771-799
[16]   On the Boussinesq/Full dispersion systems and Boussinesq/Boussinesq systems for internal waves [J].
Cung The Anh .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 72 (01) :409-429
[17]   A class of model equations for bi-directional propagation of capillary-gravity waves [J].
Daripa, P ;
Dash, RK .
INTERNATIONAL JOURNAL OF ENGINEERING SCIENCE, 2003, 41 (02) :201-218
[18]   A New Class of Two-Layer Green-Naghdi Systems with Improved Frequency Dispersion [J].
Duchene, V. ;
Israwi, S. ;
Talhouk, R. .
STUDIES IN APPLIED MATHEMATICS, 2016, 137 (03) :356-415
[19]   BOUSSINESQ/BOUSSINESQ SYSTEMS FOR INTERNAL WAVES WITH A FREE SURFACE, AND THE KDV APPROXIMATION [J].
Duchene, Vincent .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2012, 46 (01) :145-185
[20]   ASYMPTOTIC SHALLOW WATER MODELS FOR INTERNAL WAVES IN A TWO-FLUID SYSTEM WITH A FREE SURFACE [J].
Duchene, Vincent .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2010, 42 (05) :2229-2260