THE CAUCHY PROBLEM ON LARGE TIME FOR SURFACE-WAVES-TYPE BOUSSINESQ SYSTEMS II

被引:34
作者
Saut, Jean-Claude [1 ,2 ]
Wang, Chao [3 ]
Xu, Li [4 ]
机构
[1] Univ Paris 11, Lab Math, UMR 8628, F-91405 Orsay, France
[2] CNRS, F-91405 Orsay, France
[3] Peking Univ, Sch Math Sci, Beijing 100871, Peoples R China
[4] Chinese Acad Sci, LSEC, Inst Computat Math, Acad Math & Syst Sci, Beijing 100190, Peoples R China
关键词
Bousinesq systems; Cauchy problem; long time existence; NONLINEAR DISPERSIVE MEDIA; AMPLITUDE LONG WAVES; WATER-WAVES; WELL-POSEDNESS; INTERNAL WAVES; BENJAMIN-ONO; EQUATIONS; EXISTENCE; MODELS; PERTURBATIONS;
D O I
10.1137/15M1050203
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is a continuation of a previous work by two of the authors [J.-C. Saut and Li Xu, T. Math. Pures Appl. (9), 97 (2012), pp. 635-662.] on long time existence for Boussinesq systems modeling the propagation of long, weakly nonlinear water waves. We provide proofs on examples not considered in the Sant and Xu paper; in particular, we prove a long time well-posedness result for a delicate "strongly dispersive" Boussinesq system.
引用
收藏
页码:2321 / 2386
页数:66
相关论文
共 45 条
[1]   Numerical study of a nonlocal model for water-waves with variable depth [J].
Aceves-Sanchez, P. ;
Minzoni, A. A. ;
Panayotaros, P. .
WAVE MOTION, 2013, 50 (01) :80-93
[2]  
Alazman AA, 2006, ADV DIFFERENTIAL EQU, V11, P121
[3]   Large time existence for 3D water-waves and asymptotics [J].
Alvarez-Samaniego, Borys ;
Lannes, David .
INVENTIONES MATHEMATICAE, 2008, 171 (03) :485-541
[5]  
[Anonymous], 1998, Amer. Math. Soc. Transl.
[6]  
Benzoni-Gavage S., 2015, PREPRINT
[7]   Asymptotic models for internal waves [J].
Bona, J. L. ;
Lannes, D. ;
Saut, J. -C. .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2008, 89 (06) :538-566
[8]   Long wave approximations for water waves [J].
Bona, JL ;
Colin, T ;
Lannes, D .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2005, 178 (03) :373-410
[9]   Boussinesq equations and other systems for small-amplitude long waves in nonlinear dispersive media: II. The nonlinear theory [J].
Bona, JL ;
Chen, M ;
Saut, JC .
NONLINEARITY, 2004, 17 (03) :925-952
[10]   Boussinesq equations and other systems for small-amplitude long waves in nonlinear dispersive media. 1: Derivation and linear theory [J].
Bona, JL ;
Chen, M ;
Saut, JC .
JOURNAL OF NONLINEAR SCIENCE, 2002, 12 (04) :283-318