Fault Tolerant Quantum Computation with Very High Threshold for Loss Errors

被引:133
作者
Barrett, Sean D. [1 ,2 ,3 ]
Stace, Thomas M. [4 ]
机构
[1] Macquarie Univ, Ctr Quantum Sci & Technol, N Ryde, NSW 2109, Australia
[2] Univ London Imperial Coll Sci Technol & Med, Blackett Lab, London SW7 2BZ, England
[3] Univ London Imperial Coll Sci Technol & Med, Inst Math Sci, London SW7 2BZ, England
[4] Univ Queensland, Sch Math & Phys, Brisbane, Qld 4072, Australia
基金
澳大利亚研究理事会;
关键词
D O I
10.1103/PhysRevLett.105.200502
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Many proposals for fault tolerant quantum computation (FTQC) suffer detectable loss processes. Here we show that topological FTQC schemes, which are known to have high error thresholds, are also extremely robust against losses. We demonstrate that these schemes tolerate loss rates up to 24.9%, determined by bond percolation on a cubic lattice. Our numerical results show that these schemes retain good performance when loss and computational errors are simultaneously present.
引用
收藏
页数:4
相关论文
共 31 条
[1]  
[Anonymous], ARXIVQUANTPH9807006
[2]   Efficient high-fidelity quantum computation using matter qubits and linear optics [J].
Barrett, SD ;
Kok, P .
PHYSICAL REVIEW A, 2005, 71 (06)
[3]   Scalable quantum computing with atomic ensembles [J].
Barrett, Sean D. ;
Rohde, Peter P. ;
Stace, Thomas M. .
NEW JOURNAL OF PHYSICS, 2010, 12
[4]   Scalability of quantum computation with addressable optical lattices [J].
Beals, T. R. ;
Vala, J. ;
Whaley, K. B. .
PHYSICAL REVIEW A, 2008, 77 (05)
[5]   Optical generation of matter qubit graph states [J].
Benjamin, SC ;
Eisert, J ;
Stace, TM .
NEW JOURNAL OF PHYSICS, 2005, 7
[6]   Universal quantum computation with ideal Clifford gates and noisy ancillas [J].
Bravyi, S ;
Kitaev, A .
PHYSICAL REVIEW A, 2005, 71 (02)
[7]   Noise thresholds for optical quantum computers [J].
Dawson, CM ;
Haselgrove, HL ;
Nielsen, MA .
PHYSICAL REVIEW LETTERS, 2006, 96 (02)
[8]   Topological quantum memory [J].
Dennis, E ;
Kitaev, A ;
Landahl, A ;
Preskill, J .
JOURNAL OF MATHEMATICAL PHYSICS, 2002, 43 (09) :4452-4505
[9]   Unity occupation of sites in a 3D optical lattice [J].
DePue, MT ;
McCormick, C ;
Winoto, SL ;
Oliver, S ;
Weiss, DS .
PHYSICAL REVIEW LETTERS, 1999, 82 (11) :2262-2265
[10]   Fast Decoders for Topological Quantum Codes [J].
Duclos-Cianci, Guillaume ;
Poulin, David .
PHYSICAL REVIEW LETTERS, 2010, 104 (05)