On Gaussian decay estimates of solutions to some linear elliptic equations and their applications

被引:2
作者
Maekawa, Yasunori
机构
[1] Nada-ku, Kobe 657-8501, 1-1, Rokkodai
来源
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK | 2011年 / 62卷 / 01期
基金
日本学术振兴会;
关键词
Elliptic equations; Gaussian decay estimates; Nonlinear convection-diffusion equations; The Haraux-Weissler equations; Standing wave solutions to nonlinear Schrodinger equations; SELF-SIMILAR SOLUTIONS; HARAUX-WEISSLER EQUATION; NONLINEAR SCHRODINGER-EQUATION; POSITIVE RADIAL SOLUTIONS; SCALAR FIELD-EQUATIONS; HEAT-EQUATION; NONUNIQUENESS; UNIQUENESS; SYMMETRY;
D O I
10.1007/s00033-010-0080-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we establish pointwise decay estimates of solutions to some linear elliptic equations by using the Nash-Moser iteration arguments and the ODE method. As applications we obtain sharp Gaussian decay estimates for solutions to nonlinear elliptic equations that are related with self-similar solutions to nonlinear heat equations and standing wave solutions to nonlinear Schrodinger equations with harmonic potential.
引用
收藏
页码:1 / 30
页数:30
相关论文
共 25 条
[1]   SELF-SIMILAR SOLUTIONS OF A CONVECTION DIFFUSION EQUATION AND RELATED SEMILINEAR ELLIPTIC PROBLEMS [J].
AGUIRRE, J ;
ESCOBEDO, M ;
ZUAZUA, E .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1990, 15 (02) :139-157
[2]  
BREZIS H, 1986, ARCH RATION MECH AN, V95, P185, DOI 10.1007/BF00251357
[3]  
Coddington E. A., 1955, THEORY ORDINARY DIFF
[4]   Structure of positive radial solutions to the Haraux-Weissler equation [J].
Dohmen, C ;
Hirose, M .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1998, 33 (01) :51-69
[5]   VARIATIONAL-PROBLEMS RELATED TO SELF-SIMILAR SOLUTIONS OF THE HEAT-EQUATION [J].
ESCOBEDO, M ;
KAVIAN, O .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1987, 11 (10) :1103-1133
[6]   LARGE TIME BEHAVIOR FOR CONVECTION-DIFFUSION EQUATIONS IN RN [J].
ESCOBEDO, M ;
ZUAZUA, E .
JOURNAL OF FUNCTIONAL ANALYSIS, 1991, 100 (01) :119-161
[7]   On a decay property of solutions to the Haraux-Weissler equation [J].
Fukuizumi, R ;
Ozawa, T .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2006, 221 (01) :134-142
[8]  
Fukuizumi R, 2005, Z ANGEW MATH PHYS, V56, P1000, DOI 10.1007/S00033-005-4060-0
[9]   Stability and instability of standing waves for the nonlinear Schrodinger equation with harmonic potential [J].
Fukuizumi, R .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2001, 7 (03) :525-544
[10]   Invariant manifolds and the long-time asymptotics of the Navier-Stokes and vorticity equations on R2 [J].
Gallay, T ;
Wayne, CE .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2002, 163 (03) :209-258