High Contrast Minimum Variance Beamforming Combined with Convolutional Neural Network

被引:0
作者
Zhuang, Renxin [1 ]
Chen, Junying [1 ]
机构
[1] South China Univ Technol, Sch Software Engn, Guangzhou 510006, Guangdong, Peoples R China
来源
2019 IEEE INTERNATIONAL ULTRASONICS SYMPOSIUM (IUS) | 2019年
基金
中国国家自然科学基金;
关键词
high contrast; minimum variance beamforming; convolutional neural network; off-axis suppressing; ultrasound imaging;
D O I
10.1109/ultsym.2019.8925661
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This work combines convolutional neural network and traditional minimum variance (MV) beamforming to produce ultrasound images with higher image contrast. The received ultrasound channel data are in time domain, and the designed deep learning neural network is based on convolutional neural network. The network model is responsible for suppressing off-axis scattering signals, and the apodization weights of MV beamforming guarantee the image resolution performance. Experimental results demonstrated that the proposed method significantly improved the contrast performance of MV beamforming while reserving high lateral resolution.
引用
收藏
页码:564 / 567
页数:4
相关论文
共 6 条
[1]   MEDICAL ULTRASONIC-IMAGING - OVERVIEW OF PRINCIPLES AND INSTRUMENTATION [J].
HAVLICE, JF ;
TAENZER, JC .
PROCEEDINGS OF THE IEEE, 1979, 67 (04) :620-641
[2]   Beamforming and Speckle Reduction Using Neural Networks [J].
Hyun, Dongwoon ;
Brickson, Leandra L. ;
Looby, Kevin T. ;
Dahl, Jeremy J. .
IEEE TRANSACTIONS ON ULTRASONICS FERROELECTRICS AND FREQUENCY CONTROL, 2019, 66 (05) :898-910
[3]  
Jensen J. A., 1996, Medical & Biological Engineering & Computing, V34, P351
[4]  
Luchies Adam C, 2018, IEEE Trans Med Imaging, V37, P2010, DOI [10.1109/TMI.2018.2809641, 10.1109/ULTSYM.2017.8091878]
[5]   Adaptive beamforming applied to medical ultrasound imaging [J].
Synnevag, Johan-Fredrik ;
Austeng, Andreas ;
Holm, Sverre .
IEEE TRANSACTIONS ON ULTRASONICS FERROELECTRICS AND FREQUENCY CONTROL, 2007, 54 (08) :1606-1613
[6]   Efficient B-Mode Ultrasound Image Reconstruction From Sub-Sampled RF Data Using Deep Learning [J].
Yoon, Yeo Hun ;
Khan, Shujaat ;
Huh, Jaeyoung ;
Ye, Jong Chul .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2019, 38 (02) :325-336