Note on twisted elliptic genus of K3 surface

被引:93
作者
Eguchi, Tohru [1 ]
Hikami, Kazuhiro [2 ]
机构
[1] Kyoto Univ, Yukawa Inst Theoret Phys, Kyoto 6068502, Japan
[2] Naruto Univ Educ, Dept Math, Tokushima 7728502, Japan
关键词
Superconformal algebra; Elliptic genus; K3; surface; Mathieu group; SUPERCONFORMAL ALGEBRAS; FINITE-GROUPS; AUTOMORPHISMS;
D O I
10.1016/j.physletb.2010.10.017
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We discuss the possibility of Mathieu group M-24 acting as symmetry group on the K3 elliptic genus as proposed recently by Ooguri, Tachikawa and one of the present authors. One way of testing this proposal is to derive the twisted elliptic genera for all conjugacy classes of M-24 so that we can determine the unique decomposition of expansion coefficients of K3 elliptic genus into irreducible representations of M-24. in this Letter we obtain all the hitherto unknown twisted elliptic genera and find a strong evidence of Mathieu moonshine. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:446 / 455
页数:10
相关论文
共 25 条
[1]  
[Anonymous], JHEP
[2]   The f(q) mock theta function conjecture and partition ranks [J].
Bringmann, Kathrin ;
Ono, Ken .
INVENTIONES MATHEMATICAE, 2006, 165 (02) :243-266
[3]  
CHENG MCN, 2010, ARXIV10055415HEPTH
[4]  
Conway J., 1979, Bull. Lond. Math. Soc, V11, P308, DOI DOI 10.1112/BLMS/11.3.308
[5]  
Conway J. H., 1985, ATLAS of Finite Groups
[6]   SUPERCONFORMAL ALGEBRAS AND STRING COMPACTIFICATION ON MANIFOLDS WITH SU(N) HOLONOMY [J].
EGUCHI, T ;
OOGURI, H ;
TAORMINA, A ;
YANG, SK .
NUCLEAR PHYSICS B, 1989, 315 (01) :193-221
[7]   ON THE UNITARY REPRESENTATIONS OF N=2 AND N=4 SUPERCONFORMAL ALGEBRAS [J].
EGUCHI, T ;
TAORMINA, A .
PHYSICS LETTERS B, 1988, 210 (1-2) :125-132
[8]  
Eguchi T., 2010, JHEP, V1002, P019
[9]  
Eguchi T, 2010, LETT MATH PHYS, V92, P269, DOI 10.1007/s11005-010-0387-3
[10]  
Eguchi T, 2009, COMMUN NUMBER THEORY, V3, P531