Oxidation mechanisms in bulk Ti2AlC: Influence of the grain size

被引:40
作者
Yu, Wenbo [1 ]
Vallet, Maxime [2 ,4 ]
Levraut, Bertrand [3 ]
Gauthier-Brunet, Veronique [3 ]
Dubois, Sylvain [3 ]
机构
[1] Beijing Jiaotong Univ, Sch Mech & Elect Control Engn, Ctr Mat Sci & Engn, Beijing 100044, Peoples R China
[2] Univ Toulouse, CEMES, CNRS, UPS, 29 Rue Jeanne Marvig,BP 94347, Toulouse 04, France
[3] Univ Poitiers, Inst PPRIME, CNRS, UPR 3346,ENSMA, Bat SP2MI,Teleport2,BP179, F-86962 Futuroscope, France
[4] Univ Paris Saclay, Serv Rech Met Phys, CEA, DEN, F-91191 Gif Sur Yvette, France
关键词
Ti2AlC; MAX phases; Oxidation mechanism; Grain size; HIGH-TEMPERATURE OXIDATION; MAX PHASES; MICROSTRUCTURAL CHARACTERIZATION; HEALING PERFORMANCE; TIN+1ALXN N=1-3; TI3ALC2; CR2ALC; STABILITY; EVOLUTION; CERAMICS;
D O I
10.1016/j.jeurceramsoc.2020.01.042
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
In this work, oxidation mechanisms were studied in fine-grained (FG) and coarse-grained (CG) Ti2AlC bulk samples. Results showed that the oxidation kinetics are controlled by the grain size of Ti2AlC. Bigger are the grains, faster is the oxidation. A dense and protective Al2O3 layer forms at the surface of FG-Ti2AlC samples while for the CG-Ti2AlC samples, a thick TiO2 layer forms on top of a discontinuous Al2O3. CG-Ti2AlC was observed to simultaneously transform into Ti3AlC2 and TiC instead of being directly transformed into TiC. This transformation result in the following crystallographically sandwich-like structure: (0001) Ti2AlC // (0001) Ti3AlC2 // (111) TiC. The volume shrinkage associated to this transformation produces elongated holes that are partially filled by alpha-Al2O3. The stress caused by the volume shrinkage generates cracks at the surface, which makes the oxygen inwards diffusion easier and thus worsens the oxidation resistance the CG-Ti2AlC bulk.
引用
收藏
页码:1820 / 1828
页数:9
相关论文
共 38 条
  • [1] Elastic and Mechanical Properties of the MAX Phases
    Barsoum, Michel W.
    Radovic, Miladin
    [J]. ANNUAL REVIEW OF MATERIALS RESEARCH, VOL 41, 2011, 41 : 195 - 227
  • [2] The MN+1AXN phases:: A new class of solids;: Thermodynamically stable nanolaminates
    Barsoum, MW
    [J]. PROGRESS IN SOLID STATE CHEMISTRY, 2000, 28 (1-4) : 201 - 281
  • [3] Oxidation of Tin+1AlXn (n=1-3 and X = C, N) -: I.: Model
    Barsoum, MW
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2001, 148 (08) : C544 - C550
  • [4] Oxidation of Tin+1AlXn (n=1-3 and X = C, N) -: II.: Experimental results
    Barsoum, MW
    Tzenov, N
    Procopio, A
    El-Raghy, T
    Ali, M
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2001, 148 (08) : C551 - C562
  • [5] Long-Term Oxidation of Ti2AlC in Air and Water Vapor at 1000-1300°C Temperature Range (vol 159, pg C90, 2012)
    Basu, S.
    Obando, N.
    Gowdy, A.
    Karaman, I.
    Radovic, M.
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2012, 159 (05) : S9 - S9
  • [6] Compressive Behavior of Ti3AlC2 and Ti3Al0.8Sn0.2C2 MAX Phases at Room Temperature
    Bei, G-P.
    Laplanche, G.
    Gauthier-Brunet, V.
    Bonneville, J.
    Dubois, S.
    [J]. JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2013, 96 (02) : 567 - 576
  • [7] Microstructural evolution during high-temperature oxidation of Ti2AlC ceramics
    Cui, Bai
    Jayaseelan, Daniel Doni
    Lee, William Edward
    [J]. ACTA MATERIALIA, 2011, 59 (10) : 4116 - 4125
  • [8] Phase stability of Ti2AlC upon oxygen incorporation: A first-principles investigation
    Dahlqvist, Martin
    Alling, Bjorn
    Abrikosov, Igor A.
    Rosen, Johanna
    [J]. PHYSICAL REVIEW B, 2010, 81 (02)
  • [9] A conceptual study into the potential of Mn+1AXn-phase ceramics for self-healing of crack damage
    Farle, Ann-Sophie
    Kwakernaak, Cees
    van der Zwaag, Sybrand
    Sloof, Willem G.
    [J]. JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2015, 35 (01) : 37 - 45
  • [10] Interdiffusion between Ti3SiC2-Ti3GeC2 and Ti2AlC-Nb2AlC diffusion couples
    Ganguly, Adrish
    Barsoum, Michel W.
    Doherty, Roger D.
    [J]. JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2007, 90 (07) : 2200 - 2204