Distribution of TYMS, MTHFR, p53 and MDR1 gene polymorphisms in patients with breast cancer treated with neoadjuvant chemotherapy

被引:28
作者
Alberto Henriquez-Hernandez, Luis [1 ,3 ]
Murias-Rosales, Adolfo [2 ,3 ]
Gonzalez-Hernandez, Ana [3 ,4 ]
Cabrera de Leon, Antonio [3 ,4 ]
Diaz-Chico, Nicolas [3 ,5 ]
Fernandez-Perez, Leandro [1 ,3 ]
机构
[1] Univ Las Palmas Gran Canaria, Dept Clin Sci, Las Palmas Gran Canaria 35016, Spain
[2] Hosp Univ Insular Gran Canaria, Med Oncol Serv, Las Palmas Gran Canaria 35016, Spain
[3] ICIC, Madrid, Spain
[4] Hosp La Candelaria, Hosp Univ La Candelaria, Res Unit, Santa Cruz De Tenerife 38010, Spain
[5] Univ Las Palmas Gran Canaria, Physiol Biochem & Mol Biol Dept, Las Palmas Gran Canaria 35016, Spain
关键词
Breast cancer; Neoadjuvant chemotherapy; Toxicity; Adverse reaction; Polymorphism; MTHFR; p53; ACUTE LYMPHOBLASTIC-LEUKEMIA; METHYLENETETRAHYDROFOLATE REDUCTASE C677T; THYMIDYLATE SYNTHASE; OVARIAN-CANCER; TOXICITY; PHARMACOGENOMICS; THERAPY; RESISTANCE; VARIANTS; RISK;
D O I
10.1016/j.canep.2010.06.013
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Purpose To investigate the role of TSER (TYMS), C677T (MTHFR), Arg72Pro (p53) and C3435T (MDR1) gene polymorphisms in breast cancer patients treated with 5-fluorouracil and cyclophosphamide-based neoadjuvant chemotherapy. Results Observed allelic frequencies were: TSER, (2) 0.54 and (3) 0.46; MTHFR C677T, (C) 0.59 and (T) 0.41; p53 Arg72Pro, (Arg) 0.73 and (Pro) 0.27; MDR1 C3435T, (C) 0.52 and (T) 0.48. MTHFR allele T and p53 allele Pro were strongly associated with toxicity due to chemotherapy (odds ratio, 7.1 (95% confidence interval, 1.4-36.1; p = 0.018) and 7.0 (95% confidence interval, 1.2-40.5; p = 0.029), respectively). Conclusion We introduced new data related to the contribution of p53 codon 72 to toxicity due to 5-fluorouracil and cyclophosphamide-based neoadjuvant chemotherapy in patients with breast cancer. (C) 2010 Elsevier Ltd. All rights reserved.
引用
收藏
页码:634 / 638
页数:5
相关论文
共 45 条
  • [21] Role of the MTHFR polymorphisms in cancer risk modification and treatment
    Kim, Young-In
    [J]. FUTURE ONCOLOGY, 2009, 5 (04) : 523 - 542
  • [22] P53 MUTATIONS INCREASE RESISTANCE TO IONIZING-RADIATION
    LEE, JM
    BERNSTEIN, A
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1993, 90 (12) : 5742 - 5746
  • [23] ATP binding cassette transporters and drug resistance in breast cancer
    Leonessa, F
    Clarke, R
    [J]. ENDOCRINE-RELATED CANCER, 2003, 10 (01) : 43 - 73
  • [24] P53 STATUS AND THE EFFICACY OF CANCER-THERAPY IN-VIVO
    LOWE, SW
    BODIS, S
    MCCLATCHEY, A
    REMINGTON, L
    RULEY, HE
    FISHER, DE
    HOUSMAN, DE
    JACKS, T
    [J]. SCIENCE, 1994, 266 (5186) : 807 - 810
  • [25] Pharmacogenomics: from bedside to clinical practice
    Marsh, S
    McLeod, HL
    [J]. HUMAN MOLECULAR GENETICS, 2006, 15 : R89 - R93
  • [26] Pharmacogenetic assessment of toxicity and outcome after platinum plus taxane chemotherapy in ovarian cancer: The Scottish randomised trial in ovarian cancer
    Marsh, Sharon
    Paul, Jim
    King, Cristi R.
    Gifford, Gillian
    McLeod, Howard L.
    Brown, Robert
    [J]. JOURNAL OF CLINICAL ONCOLOGY, 2007, 25 (29) : 4528 - 4535
  • [27] Impact of pharmacogenomics on clinical practice in oncology
    Marsh, Sharon
    [J]. MOLECULAR DIAGNOSIS & THERAPY, 2007, 11 (02) : 79 - 82
  • [28] MILLER AB, 1981, CANCER, V47, P207, DOI 10.1002/1097-0142(19810101)47:1<207::AID-CNCR2820470134>3.0.CO
  • [29] 2-6
  • [30] Nilsson G, 1999, CANCER RES, V59, P3180