Twistor fishnets

被引:7
作者
Adamo, Tim [1 ]
Jaitly, Sumer [1 ]
机构
[1] Imperial Coll London, Blackett Lab, Theoret Phys Grp, London SW7 2AZ, England
关键词
scattering amplitudes; twistor theory; conformal invariance; MARGINAL DEFORMATIONS; GAUGE-THEORY; YANG-MILLS; N=4 SYM; INTEGRABILITY; DUALITY;
D O I
10.1088/1751-8121/ab5f88
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Four-dimensional conformal fishnet theory is an integrable scalar theory which arises as a double scaling limit of -deformed maximally supersymmetric Yang-Mills. We give a perturbative reformulation of -deformed super-Yang-Mills theory in twistor space, and implement the double scaling limit to obtain a twistor description of conformal fishnet theory. The conformal fishnet theory retains an abelian gauge symmetry on twistor space which is absent in space-time, allowing us to obtain cohomological formulae for scattering amplitudes that manifest conformal invariance. We study various classes of scattering amplitudes in twistor space with this formalism.
引用
收藏
页数:35
相关论文
共 83 条
  • [11] Arkani-Hamed N, 2011, J HIGH ENERGY PHYS, DOI 10.1007/JHEP01(2011)041
  • [12] Hexagons and correlators in the fishnet theory
    Basso, Benjamin
    Caetano, Joao
    Fleury, Thiago
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2019, 2019 (11)
  • [13] Continuum limit of fishnet graphs and AdS sigma model
    Basso, Benjamin
    Zhong, De-liang
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2019, 2019 (01)
  • [14] Gluing Ladder Feynman Diagrams into Fishnets
    Basso, Benjamin
    Dixon, Lance J.
    [J]. PHYSICAL REVIEW LETTERS, 2017, 119 (07)
  • [15] Review of AdS/CFT Integrability: An Overview
    Beisert, Niklas
    Ahn, Changrim
    Alday, Luis F.
    Bajnok, Zoltan
    Drummond, James M.
    Freyhult, Lisa
    Gromov, Nikolay
    Janik, Romuald A.
    Kazakov, Vladimir
    Klose, Thomas
    Korchemsky, Gregory P.
    Kristjansen, Charlotte
    Magro, Marc
    Mcloughlin, Tristan
    Minahan, Joseph A.
    Nepomechie, Rafael I.
    Rej, Adam
    Roiban, Radu
    Schaefer-Nameki, Sakura
    Sieg, Christoph
    Staudacher, Matthias
    Torrielli, Alessandro
    Tseytlin, Arkady A.
    Vieira, Pedro
    Volin, Dmytro
    Zoubos, Konstantinos
    [J]. LETTERS IN MATHEMATICAL PHYSICS, 2012, 99 (1-3) : 3 - 32
  • [16] Loops in twistor space
    Bena, I
    Bern, Z
    Kosower, DA
    Roiban, R
    [J]. PHYSICAL REVIEW D, 2005, 71 (10):
  • [17] From twistor actions to MHV diagrams
    Boels, Rutger
    Mason, Lionel
    Skinner, David
    [J]. PHYSICS LETTERS B, 2007, 648 (01) : 90 - 96
  • [18] Supersymmetric gauge theories in twistor space
    Boels, Rutger
    Mason, Lionel
    Skinner, David
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2007, (02):
  • [19] Traintracks through Calabi-Yau Manifolds: Scattering Amplitudes beyond Elliptic Polylogarithms
    Bourjaily, Jacob L.
    He, Yang-Hui
    McLeod, Andrew J.
    von Hippel, Matt
    Wilhelm, Matthias
    [J]. PHYSICAL REVIEW LETTERS, 2018, 121 (07)
  • [20] The connected prescription for form factors in twistor space
    Brandhuber, A.
    Hughes, E.
    Panerai, R.
    Spence, B.
    Travaglini, G.
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2016, (11):