Thermal Properties of Graphene Filled Polymer Composite Thermal Interface Materials

被引:84
作者
Zhang, Ping [1 ,2 ,3 ]
Zeng, Jianhua [1 ]
Zhai, Siping [1 ]
Xian, Yaoqi [1 ]
Yang, Daoguo [1 ]
Li, Qiang [2 ]
机构
[1] Guilin Univ Elect Technol, Sch Mech & Elect Engn, 1 Jinji Rd, Guilin 541004, Guangxi, Peoples R China
[2] Nanjing Univ Sci & Technol, Sch Energy & Power Engn, MIIT Key Lab Thermal Control Elect Equipment, Nanjing 210094, Jiangsu, Peoples R China
[3] Guangxis Key Lab Mfg Syst & Adv Mfg Technol, Guilin 541004, Guangxi, Peoples R China
基金
中国国家自然科学基金;
关键词
graphene; thermal interface materials; thermal properties; BORON-NITRIDE; CARBON NANOTUBE; MECHANICAL-PROPERTIES; MOLECULAR-DYNAMICS; LINE THICKNESS; PARTICLE-SIZE; CONDUCTIVITY; TRANSPORT; EPOXY; NANOCOMPOSITES;
D O I
10.1002/mame.201700068
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Recent years have witnessed a staggering escalation in the power density of modern electronic devices. Because increasingly high power density accumulates heat, efficient heat removal has become a critical limitation for the performance, reliability, and further development of modern electronic devices. Thermal interface materials (TIMs) are widely employed between the two solid contact surfaces of heat sources and heat sinks to increase heat removal for electric devices. Composites of graphene and matrix materials are expected to be the most promising TIMs because of the remarkable thermal conductivity of graphene. Here, the recent research on the thermal properties of graphene filled polymer composite TIMs is reviewed. First, the composition of graphene filled polymer composite TIMs is introduced. Then, the synthetic methods for graphene filled polymer composite TIMs are primarily described. This study focuses on introducing the methods for improving and characterizing the thermal properties of graphene filled polymer composite TIMs. Furthermore, the challenges facing graphene filled poly-mer composite TIMs for thermal management applications in the modern electronic industry and the further progress required in this field are discussed.
引用
收藏
页数:18
相关论文
共 135 条
[31]  
Ghosh S, 2010, NAT MATER, V9, P555, DOI [10.1038/NMAT2753, 10.1038/nmat2753]
[32]   Thermal Properties of Graphene-Copper-Graphene Heterogeneous Films [J].
Goli, Pradyumna ;
Ning, Hao ;
Li, Xuesong ;
Lu, Ching Yu ;
Novoselov, Konstantin S. ;
Balandin, Alexander A. .
NANO LETTERS, 2014, 14 (03) :1497-1503
[33]   Graphene-enhanced hybrid phase change materials for thermal management of Li-ion batteries [J].
Goli, Pradyumna ;
Legedza, Stanislav ;
Dhar, Aditya ;
Salgado, Ruben ;
Renteria, Jacqueline ;
Balandin, Alexander A. .
JOURNAL OF POWER SOURCES, 2014, 248 :37-43
[34]   Thermal properties of the hybrid graphene-metal nano-micro-composites: Applications in thermal interface materials [J].
Goyal, Vivek ;
Balandin, Alexander A. .
APPLIED PHYSICS LETTERS, 2012, 100 (07)
[35]   Atomic-scale computations of the lattice contribution to thermal conductivity of single-walled carbon nanotubes [J].
Grujicic, M ;
Cao, G ;
Gersten, B .
MATERIALS SCIENCE AND ENGINEERING B-SOLID STATE MATERIALS FOR ADVANCED TECHNOLOGY, 2004, 107 (02) :204-216
[36]   Thermal conductivity of carbon nanotubes and their polymer nanocomposites: A review [J].
Han, Zhidong ;
Fina, Alberto .
PROGRESS IN POLYMER SCIENCE, 2011, 36 (07) :914-944
[37]   The c-axis thermal conductivity of graphite film of nanometer thickness measured by time resolved X-ray diffraction [J].
Harb, M. ;
Schmising, C. von Korff ;
Enquist, H. ;
Jurgilaitis, A. ;
Maximov, I. ;
Shvets, P. V. ;
Obraztsov, A. N. ;
Khakhulin, D. ;
Wulff, M. ;
Larsson, J. .
APPLIED PHYSICS LETTERS, 2012, 101 (23)
[38]   Size and temperature dependence of the specific heat capacity of carbon nanotubes [J].
Hepplestone, S. P. ;
Ciavarella, A. M. ;
Janke, C. ;
Srivastava, G. P. .
SURFACE SCIENCE, 2006, 600 (18) :3633-3636
[39]   Enhanced dispersion of carbon nanotube in silicone rubber assisted by graphene [J].
Hu, Haiqing ;
Zhao, Li ;
Liu, Jiaqiang ;
Liu, Yin ;
Cheng, Junmei ;
Luo, Jun ;
Liang, Yongri ;
Tao, Yong ;
Wang, Xin ;
Zhao, Jian .
POLYMER, 2012, 53 (15) :3378-3385
[40]   Thermal conductivity determination of small polymer samples by differential scanning calorimetry [J].
Hu, Min ;
Yu, Demei ;
Wei, Jianbo .
POLYMER TESTING, 2007, 26 (03) :333-337