ON THE DISCRETIZATION OF SOME NONLINEAR FOKKER-PLANCK-KOLMOGOROV EQUATIONS AND APPLICATIONS

被引:25
作者
Carlini, Elisabetta [1 ]
Silva, Francisco J. [2 ,3 ]
机构
[1] Sapienza Univ Roma, Dipartimento Matemat Guido Castelnuovo, I-00185 Rome, Italy
[2] Univ Toulouse I Capitole, UMR CNRS 5314, TSE R, F-31015 Toulouse, France
[3] Univ Limoges, Fac Sci & Tech, Inst Rech XLIM DMI, UMR CNRS 7252, F-87060 Limoges, France
关键词
nonlinear Fokker-Planck-Kolmogorov equations; numerical analysis; semi-Lagrangian schemes; Markov chain approximation; Mean Field Games; SEMI-LAGRANGIAN SCHEME; MEAN-FIELD GAMES; HUGHES MODEL; NUMERICAL-SOLUTION; DIFFUSION; UNIQUENESS; FLOW;
D O I
10.1137/17M1143022
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work, we consider the discretization of some nonlinear Fokker-Planck-Kolmogorov equations. The scheme we propose preserves the nonnegativity of the solution, conserves the mass, and, as the discretization parameters tend to zero, has limit measure-valued trajectories which are shown to solve the equation. The main assumptions to obtain a convergence result are that the coefficients are continuous and satisfy a suitable linear growth property with respect to the space variable. In particular, we obtain a new proof of existence of solutions for such equations. We apply our results to some nonlinear examples, including Mean Field Games systems and variations of the Hughes model for pedestrian dynamics.
引用
收藏
页码:2148 / 2177
页数:30
相关论文
共 62 条
[1]   ON NUMERICAL APPROXIMATION OF THE HAMILTON-JACOBI-TRANSPORT SYSTEM ARISING IN HIGH FREQUENCY APPROXIMATIONS [J].
Achdou, Yves ;
Camilli, Fabio ;
Corrias, Lucilla .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2014, 19 (03) :629-650
[2]   MEAN FIELD GAMES: NUMERICAL METHODS [J].
Achdou, Yves ;
Capuzzo-Dolcetta, Italo .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2010, 48 (03) :1136-1162
[3]   Transport equation and Cauchy problem for BV vector fields [J].
Ambrosio, L .
INVENTIONES MATHEMATICAE, 2004, 158 (02) :227-260
[4]  
Ambrosio L, 2003, LECT NOTES MATH, V1812, P1
[5]   A Fokker-Planck control framework for multidimensional stochastic processes [J].
Annunziato, M. ;
Borzi, A. .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2013, 237 (01) :487-507
[6]  
[Anonymous], 1979, GRUNDLEHREN MATH WIS
[7]  
[Anonymous], 1977, Mathematics in Science and Engineering
[8]  
[Anonymous], 2015, MATH SURVEYS MONOGR
[9]  
[Anonymous], 2007, NUMERICAL MATH, DOI DOI 10.1007/B98885
[10]  
[Anonymous], 2003, TOPICS OPTIMAL TRANS