Symmetries of Schrodinger operators with point interactions

被引:101
作者
Albeverio, S [1 ]
Dabrowski, L [1 ]
Kurasov, P [1 ]
机构
[1] Univ Bonn, Fak Math, D-53315 Bonn, Germany
关键词
Schrodinger operators; symmetries; extension theory; point interactions; exactly solvable models;
D O I
10.1023/A:1007493325970
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The transformations of all the Schrodinger operators with point interactions in dimension one under space reflection P, time reversal T and (Weyl) scaling W-lambda are presented. In particular, those operators which are invariant (possibly up to a scale) are selected. Some recent papers on related topics are commented upon.
引用
收藏
页码:33 / 47
页数:15
相关论文
共 50 条
[41]   Kernel estimates for Schrodinger operators [J].
Metafune, G. ;
Pallara, D. ;
Rhandi, A. .
JOURNAL OF EVOLUTION EQUATIONS, 2006, 6 (03) :433-457
[42]   On the Discreteness of the Spectrum of Matrix Schrödinger and Dirac Operators with Point Interactions [J].
V. S. Budyka ;
M. M. Malamud .
Mathematical Notes, 2021, 110 :960-966
[43]   Two-parametric δ′-interactions: approximation by Schrodinger operators with localized rank-two perturbations [J].
Golovaty, Yuriy .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2018, 51 (25)
[44]   NOTE ON 2D SCHRODINGER OPERATORS WITH delta-INTERACTIONS ON ANGLES AND CROSSING LINES [J].
Lotoreichik, V. .
NANOSYSTEMS-PHYSICS CHEMISTRY MATHEMATICS, 2013, 4 (02) :166-172
[45]   Critical point symmetries in nuclei [J].
Casten, RF .
REVISTA MEXICANA DE FISICA, 2002, 48 :62-65
[46]   On fundamental solutions of generalized Schrodinger operators [J].
Shen, ZW .
JOURNAL OF FUNCTIONAL ANALYSIS, 1999, 167 (02) :521-564
[47]   Uniqueness of Schrodinger operators restricted in a domain [J].
Wu, LM .
JOURNAL OF FUNCTIONAL ANALYSIS, 1998, 153 (02) :276-319
[48]   Schrodinger operators with slowly decaying potentials [J].
Davies, EB ;
Nath, J .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2002, 148 (01) :1-28
[49]   On the Essential Spectrum of Schrodinger Operators on Trees [J].
Breuer, Jonathan ;
Denisov, Sergey ;
Eliaz, Latif .
MATHEMATICAL PHYSICS ANALYSIS AND GEOMETRY, 2018, 21 (04)
[50]   Pseudomodes for Schrodinger operators with complex potentials [J].
Krejcirik, David ;
Siegl, Petr .
JOURNAL OF FUNCTIONAL ANALYSIS, 2019, 276 (09) :2856-2900