Symmetries of Schrodinger operators with point interactions

被引:101
作者
Albeverio, S [1 ]
Dabrowski, L [1 ]
Kurasov, P [1 ]
机构
[1] Univ Bonn, Fak Math, D-53315 Bonn, Germany
关键词
Schrodinger operators; symmetries; extension theory; point interactions; exactly solvable models;
D O I
10.1023/A:1007493325970
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The transformations of all the Schrodinger operators with point interactions in dimension one under space reflection P, time reversal T and (Weyl) scaling W-lambda are presented. In particular, those operators which are invariant (possibly up to a scale) are selected. Some recent papers on related topics are commented upon.
引用
收藏
页码:33 / 47
页数:15
相关论文
共 50 条
[21]   A Schrodinger operator with point interactions on Sobolev spaces [J].
Albeverio, S ;
Nizhnik, L .
LETTERS IN MATHEMATICAL PHYSICS, 2004, 70 (03) :185-194
[22]   A power series analysis of bound and resonance states of one-dimensional Schrodinger operators with finite point interactions [J].
Barrera-Figueroa, Victor .
APPLIED MATHEMATICS AND COMPUTATION, 2022, 417
[23]   On the number of negative eigenvalues of a one-dimensional Schrodinger operator with point interactions [J].
Albeverio, S ;
Nizhnik, L .
LETTERS IN MATHEMATICAL PHYSICS, 2003, 65 (01) :27-35
[24]   ON THE NUMBER OF NEGATIVE EIGENVALUES OF A MULTI-DIMENSIONAL SCHRODINGER OPERATOR WITH POINT INTERACTIONS [J].
Ogurisu, Osamu .
METHODS OF FUNCTIONAL ANALYSIS AND TOPOLOGY, 2010, 16 (04) :383-392
[25]   Symmetries of the free Schrodinger equation [J].
Kotel'nikov, GA .
JOURNAL OF RUSSIAN LASER RESEARCH, 2002, 23 (06) :565-579
[26]   Symmetries of the nonlinear Schrodinger equation [J].
Grébert, B ;
Kappeler, T .
BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE, 2002, 130 (04) :603-618
[27]   ON THE SPECTRUM OF THE SCHRODINGER HAMILTONIAN WITH A PARTICULAR CONFIGURATION OF THREE ONE-DIMENSIONAL POINT INTERACTIONS [J].
Fassari, Silvestro ;
Rinaldi, Fabio .
REPORTS ON MATHEMATICAL PHYSICS, 2009, 64 (03) :367-393
[28]   ONE DIMENSIONAL SCHRODINGER OPERATORS WITH δ′-INTERACTIONS ON A SET OF LEBESGUE MEASURE ZERO [J].
Brasche, Johannes F. ;
Nizhnik, Leonid .
OPERATORS AND MATRICES, 2013, 7 (04) :887-904
[29]   Random Sturm-Liouville operators with point interactions [J].
del Rio, Rafael ;
Franco, Asaf L. .
MATHEMATISCHE NACHRICHTEN, 2021, 294 (09) :1684-1701
[30]   Bilinear operators associated with Schrodinger operators [J].
Lin, Chin-Cheng ;
Lin, Ying-Chieh ;
Liu, Heping ;
Liu, Yu .
STUDIA MATHEMATICA, 2011, 205 (03) :281-295