The Hochschild cohomology ring of a selfinjective algebra of finite representation type

被引:44
作者
Green, EL [1 ]
Snashall, N
Solberg, O
机构
[1] Virginia Tech, Dept Math, Blacksburg, VA 24061 USA
[2] Univ Leicester, Dept Math & Comp Sci, Leicester LE1 7RH, Leics, England
[3] NTNU, Inst Matemat Fag, N-7491 Trondheim, Norway
关键词
D O I
10.1090/S0002-9939-03-06912-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper describes the Hochschild cohomology ring of a selfinjective algebra Lambda of finite representation type over an algebraically closed field K, showing that the quotient HH* (Lambda)/N of the Hochschild cohomology ring by the ideal N generated by all homogeneous nilpotent elements is isomorphic to either K or K[x], and is thus finitely generated as an algebra. We also consider more generally the property of a finite dimensional algebra being selfinjective, and as a consequence show that if all simple Lambda-modules are Omega-periodic, then Lambda is selfinjective.
引用
收藏
页码:3387 / 3393
页数:7
相关论文
共 13 条
[1]  
[Anonymous], 1998, ALGEBRAS MODULES, V24, P183
[2]   The derived equivalence classification of representation-finite selfinjective algebras [J].
Asashiba, H .
JOURNAL OF ALGEBRA, 1999, 214 (01) :182-221
[3]  
Auslander M., 1995, CAMBRIDGE STUDIES AD, V36
[4]  
Benson DJ, 1991, CAMBRIDGE STUDIES AD, V31
[5]  
BRENNER S, 2000, PERIODIC ALGEBRAS PI
[6]  
Erdmann K, 1999, FORUM MATH, V11, P177
[7]   Twisted bimodules and Hochschild cohomology for self-injective algebras of class An, II [J].
Erdmann, K ;
Holm, T ;
Snashall, N .
ALGEBRAS AND REPRESENTATION THEORY, 2002, 5 (05) :457-482
[8]   On Hochschild cohomology of preprojective algebras, II [J].
Erdmann, K ;
Snashall, N .
JOURNAL OF ALGEBRA, 1998, 205 (02) :413-434
[9]  
Erdmann K, 1998, J ALGEBRA, V205, P391, DOI 10.1006/jabr.1998.7547
[10]  
Happel Dieter, 1989, Lecture Notes in Math., V1404, P108