Thermal conductivity of self-ion irradiated nanocrystalline zirconium thin films

被引:5
作者
Pulavarthy, Raghu [1 ]
Wang, Baoming [1 ]
Hattar, Khalid [2 ]
Haque, M. A. [1 ]
机构
[1] Penn State Univ, Mech Nucl Engn, University Pk, PA 16802 USA
[2] Sandia Natl Labs, POB 5800, Albuquerque, NM 87185 USA
基金
美国国家科学基金会;
关键词
Thermal conductivity; Ion irradiation; Nanocrystalline metal; Transmission electron microscopy (TEM); RADIATION-DAMAGE; THERMOREFLECTANCE;
D O I
10.1016/j.tsf.2017.07.035
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Thermomechanical stability and high thermal conductivity are important for nuclear cladding material performance and reliability, which degrade over time under irradiation. The literature suggests nanocrystalline materials as radiation tolerant, but little or no evidence is present from thermal transport perspective. In this study, we irradiated 10 nm grain size zirconium thin films with 800 keV Zr+ beam from a 6 MV HVE Tandem accelerator to achieve various doses of 3 x 10(10) to 3.26 x 10(14) ions/cm(2), corresponding to displacement per atom (dpa) of 2.1 x 10(-4) to 2.28. Transmission electron microscopy showed significant grain growth, texture evolution and oxidation in addition to the creation of displacement defects due to the irradiation. The specimens were co-fabricated with micro-heaters to establish thermal gradients that were mapped using infrared thermometry. An energy balance approach was used to estimate the thermal conductivity of the specimens, as function of irradiation dosage. Up to 32% reduction of thermal conductivity was measured for the sample exposed to a dose of 2.1 dpa (3 x 10(14) ions/cm(2)). (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:17 / 21
页数:5
相关论文
共 35 条
[1]   Structural size and temperature dependence of solid to air heat transfer [J].
Alam, M. T. ;
Raghu, A. P. ;
Hague, M. A. ;
Muratore, C. ;
Voevodin, A. A. .
INTERNATIONAL JOURNAL OF THERMAL SCIENCES, 2013, 73 :1-7
[2]   Irradiation deformation near different atomic grain boundaries in α-Zr: An investigation of thermodynamics and kinetics of point defects [J].
Arjhangmehr, A. ;
Feghhi, S. A. H. .
SCIENTIFIC REPORTS, 2016, 6
[3]   Efficient Annealing of Radiation Damage Near Grain Boundaries via Interstitial Emission [J].
Bai, Xian-Ming ;
Voter, Arthur F. ;
Hoagland, Richard G. ;
Nastasi, Michael ;
Uberuaga, Blas P. .
SCIENCE, 2010, 327 (5973) :1631-1634
[4]   Study of the zirconium oxidation under heavy ion irradiation [J].
Bererd, N. ;
Moncoffre, N. ;
Chevarier, A. ;
Jaffrezic, H. ;
Faust, H. ;
Balanzat, E. .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS, 2006, 249 :513-516
[5]   Radiation damage tolerant nanomaterials [J].
Beyerlein, I. J. ;
Caro, A. ;
Demkowicz, M. J. ;
Mara, N. A. ;
Misra, A. ;
Uberuaga, B. P. .
MATERIALS TODAY, 2013, 16 (11) :443-449
[6]   Differential 3ω method for measuring thermal conductivity of AlN and Si3N4 thin films [J].
Bogner, Manuel ;
Hofer, Alexander ;
Benstetter, Guenther ;
Gruber, Hermann ;
Fu, Richard Y. Q. .
THIN SOLID FILMS, 2015, 591 :267-270
[7]   Thermal conductivity measurements via time-domain thermoreflectance for the characterization of radiation induced damage [J].
Cheaito, Ramez ;
Gorham, Caroline S. ;
Misra, Amit ;
Hattar, Khalid ;
Hopkins, Patrick E. .
JOURNAL OF MATERIALS RESEARCH, 2015, 30 (09) :1403-1412
[8]   Heat Transfer across the Interface between Nanoscale Solids and Gas [J].
Cheng, Chun ;
Fan, Wen ;
Cao, Jinbo ;
Ryu, Sang-Gil ;
Ji, Jie ;
Grigoropoulos, Costas P. ;
Wu, Junqiao .
ACS NANO, 2011, 5 (12) :10102-10107
[9]   Dislocation-accelerated void formation under irradiation in zirconium [J].
Di, Sali ;
Yao, Zhongwen ;
Daymond, Mark R. ;
Zu, Xiaotao ;
Peng, Shuming ;
Gao, Fei .
ACTA MATERIALIA, 2015, 82 :94-99
[10]   Simulation of grain boundary effects on electronic transport in metals, and detailed causes of scattering [J].
Feldman, Baruch ;
Park, Seongjun ;
Haverty, Michael ;
Shankar, Sadasivan ;
Dunham, Scott T. .
PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2010, 247 (07) :1791-1796