Quasi-periodic solutions for some (2+1)-dimensional integrable models generated by the Jaulent-Miodek hierarchy

被引:56
|
作者
Geng, XG [1 ]
Cao, CW
Dai, HH
机构
[1] CCAST, World Lab, POB 8730, Beijing 100080, Peoples R China
[2] Zhengzhou Univ, Dept Math, Zhengzhou 450052, Peoples R China
[3] City Univ Hong Kong, Dept Math, Kowloon, Hong Kong, Peoples R China
来源
关键词
D O I
10.1088/0305-4470/34/5/305
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Some (2 + 1)-dimensional integrable models, including the modified Kadomtsev-Petviashvili equation, generated by the Jaulent-Miodek hierarchy are investigated. With the help of the Jaulent-Miodek eigenvalue problem, these (2 + 1)-dimensional integrable models are separated into compatible Hamiltonian systems of ordinary differential equations. Using the generating function flow method, the involutivity and the functional independence of the integrals are proved. The Abel-Jacobi coordinates are introduced, from which the quasi-periodic solutions for these (2 + 1)-dimensional integrable models are derived by resorting to the Riemann theta functions.
引用
收藏
页码:989 / 1004
页数:16
相关论文
共 50 条
  • [21] (2+1)维Jaulent-Miodek方程的扭结孤子解
    韦方棋
    朱世辉
    王小娇
    西华师范大学学报(自然科学版), 2017, 38 (04) : 392 - 397
  • [22] Explicit Exact Solutions of the (2+1)-Dimensional Integro-Differential Jaulent-Miodek Evolution Equation Using the Reliable Methods
    Kaewta, Supaporn
    Sirisubtawee, Sekson
    Khansai, Nattawut
    INTERNATIONAL JOURNAL OF MATHEMATICS AND MATHEMATICAL SCIENCES, 2020, 2020
  • [23] Quasi-periodic solutions for some 2+1-dimensional discrete models
    Geng, XG
    Dai, HH
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2003, 319 (SUPPL.) : 270 - 294
  • [24] Dynamics of closed-form invariant solutions and formal Lagrangian approach to a nonlinear model generated by the Jaulent-Miodek hierarchy
    Usman, Muhammad
    Hussain, Akhtar
    Zidan, Ahmed M.
    ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2025, 80 (03): : 215 - 232
  • [25] Two (2+1)-dimensional soliton equations and their quasi-periodic solutions
    Hao, YH
    Du, DL
    CHAOS SOLITONS & FRACTALS, 2005, 26 (03) : 979 - 996
  • [26] Further Results about Seeking for the Exact Solutions of the Nonlinear (2+1-Dimensional Jaulent-Miodek Equation
    Hu, Jingsen
    Qi, Jianming
    ADVANCES IN MATHEMATICAL PHYSICS, 2021, 2021
  • [27] Decomposition of the (2+1)-dimensional Gardner equation and its quasi-periodic solutions
    Geng, XG
    Cao, CW
    NONLINEARITY, 2001, 14 (06) : 1433 - 1452
  • [28] On the exact solutions and conservation laws of a generalized (1+2)-dimensional Jaulent-Miodek equation with a power law nonlinearity
    Mbusi, S. O.
    Muatjetjeja, B.
    Adem, A. R.
    INTERNATIONAL JOURNAL OF NONLINEAR ANALYSIS AND APPLICATIONS, 2022, 13 (01): : 1721 - 1735
  • [29] Kink Soliton Dynamic of the (2+1)-Dimensional Integro-Differential Jaulent-Miodek Equation via a Couple of Integration Techniques
    Cakicioglu, Hasan
    Ozisik, Muslum
    Secer, Aydin
    Bayram, Mustafa
    SYMMETRY-BASEL, 2023, 15 (05):
  • [30] The first integral method to study the (2+1)-dimensional Jaulent–Miodek equations
    M MATINFAR
    M ESLAMI
    S ROSHANDEL
    Pramana, 2015, 85 : 593 - 603