Hasse principle for hermitian spaces over semi-global fields

被引:6
作者
Wu, Zhengyao [1 ]
机构
[1] Emory Univ, Dept Math & Comp Sci, 400 Dowman Dr,W401, Atlanta, GA 30322 USA
基金
美国国家科学基金会;
关键词
Hermitian; Hasse principle; Local-global principle; Isotropic; Patching; Projective homogeneous; Twisted flag variety; INDEX REDUCTION FORMULAS; ODD DEGREE EXTENSIONS; RATIONALITY PROBLEM; ALGEBRAS; THEOREM; FORMS;
D O I
10.1016/j.jalgebra.2016.02.027
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In a recent paper, Colliot-Thelene, Parimala and Suresh conjectured that a local global principle holds for projective homogeneous spaces under connected linear algebraic groups over function fields of p-adic curves. In this paper, we show that the conjecture is true for any linear algebraic group whose almost simple factors of its semisimple part are isogenous to unitary groups or special unitary groups of hermitian or skew-hermitian spaces over central simple algebras with involutions. The proof implements patching techniques of Harbater, Hartmann and Krashen. As an application, we obtain a Springer-type theorem for isotropy of hermitian spaces over odd degree extensions of function fields of p-adic curves. (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:171 / 196
页数:26
相关论文
共 48 条
[1]  
Abhyankar S. S., 1969, INTERNAT C TATA I FU, P1
[2]  
[Anonymous], 2007, ELEMENTS MATH
[3]  
Auslander M., 1960, T AM MATH SOC, V97, P1, DOI 10.2307/1993361
[4]  
Auslander M., 1960, T AM MATH SOC, V97, P367, DOI DOI 10.2307/1993378
[5]   Similitudes of algebras with involution under odd-degree extensions [J].
Barquero-Salavert, PB .
COMMUNICATIONS IN ALGEBRA, 2006, 34 (02) :625-632
[6]   FORMS IN ODD DEGREE EXTENSIONS AND SELF-DUAL NORMAL BASES [J].
BAYERFLUCKIGER, E ;
LENSTRA, HW .
AMERICAN JOURNAL OF MATHEMATICS, 1990, 112 (03) :359-373
[7]   Involutions, odd degree extensions and generic splitting [J].
Black, Jodi ;
Queguiner-Mathieu, Anne .
ENSEIGNEMENT MATHEMATIQUE, 2014, 60 (3-4) :377-395
[8]  
Borel A., 1972, Inst. Hautes Etudes Sci. Publ. Math., V41, P253
[9]  
Borel Armand, 1991, GRAD TEXTS MATH, V126
[10]  
Bourbaki Nicolas, 2003, ELEMENTS MATH