Predicting Power Conversion Efficiency of Organic Photovoltaics: Models and Data Analysis

被引:16
作者
Eibeck, Andreas [1 ]
Nurkowski, Daniel [2 ]
Menon, Angiras [3 ]
Bai, Jiaru [3 ]
Wu, Jinkui [4 ]
Zhou, Li [4 ]
Mosbach, Sebastian [2 ,3 ]
Akroyd, Jethro [2 ,3 ]
Kraft, Markus [1 ,3 ,5 ]
机构
[1] Cambridge Ctr Adv Res & Educ Singapore, CARES, Singapore 138602, Singapore
[2] CMCL Innovat, Cambridge CB3 0AX, England
[3] Univ Cambridge, Dept Chem Engn & Biotechnol, Cambridge CB3 0AS, England
[4] Sichuan Univ, Sch Chem Engn, Chengdu 610065, Sichuan, Peoples R China
[5] Nanyang Technol Univ, Sch Chem & Biomed Engn, Singapore 637459, Singapore
来源
ACS OMEGA | 2021年 / 6卷 / 37期
基金
英国工程与自然科学研究理事会; 新加坡国家研究基金会;
关键词
CLEAN ENERGY PROJECT; SOLAR-CELLS; DESIGN; EMERGENCE;
D O I
10.1021/acsomega.1c02156
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
In this paper, the ability of three selected machine learning neural and baseline models in predicting the power conversion efficiency (PCE) of organic photovoltaics (OPVs) using molecular structure information as an input is assessed. The bidirectional long short-term memory (gFSI/BiLSTM), attentive fingerprints (attentive FP), and simple graph neural networks (simple GNN) as well as baseline support vector regression (SVR), random forests (RF), and high-dimensional model representation (HDMR) methods are trained to both the large and computational Harvard clean energy project database (CEPDB) and the much smaller experimental Harvard organic photovoltaic 15 dataset (HOPV15). It was found that the neural-based models generally performed better on the computational dataset with the attentive FP model reaching a state-of-the-art performance with the test set mean squared error of 0.071. The experimental dataset proved much harder to fit, with all of the models exhibiting a rather poor performance. Contrary to the computational dataset, the baseline models were found to perform better than the neural models. To improve the ability of machine learning models to predict PCEs for OPVs, either better computational results that correlate well with experiments or more experimental data at well-controlled conditions are likely required.
引用
收藏
页码:23764 / 23775
页数:12
相关论文
共 39 条
[1]   Organic Solar Cells: A Review of Materials, Limitations, and Possibilities for Improvement [J].
Abdulrazzaq, Omar A. ;
Saini, Viney ;
Bourdo, Shawn ;
Dervishi, Enkeleda ;
Biris, Alexandru S. .
PARTICULATE SCIENCE AND TECHNOLOGY, 2013, 31 (05) :427-442
[2]   Optuna: A Next-generation Hyperparameter Optimization Framework [J].
Akiba, Takuya ;
Sano, Shotaro ;
Yanase, Toshihiko ;
Ohta, Takeru ;
Koyama, Masanori .
KDD'19: PROCEEDINGS OF THE 25TH ACM SIGKDD INTERNATIONAL CONFERENCCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2019, :2623-2631
[3]  
[Anonymous], 2018, ARXIV180510988
[4]  
Bahdanau D, 2016, Arxiv, DOI arXiv:1409.0473
[5]  
CMCL Innovations, 2020, MODS MOD DEV SUIT VE
[6]   Automatic Chemical Design Using a Data-Driven Continuous Representation of Molecules [J].
Gomez-Bombarelli, Rafael ;
Wei, Jennifer N. ;
Duvenaud, David ;
Hernandez-Lobato, Jose Miguel ;
Sanchez-Lengeling, Benjamin ;
Sheberla, Dennis ;
Aguilera-Iparraguirre, Jorge ;
Hirzel, Timothy D. ;
Adams, Ryan P. ;
Aspuru-Guzik, Alan .
ACS CENTRAL SCIENCE, 2018, 4 (02) :268-276
[7]  
Graves A, 2012, STUD COMPUT INTELL, V385, P1, DOI [10.1162/neco.1997.9.1.1, 10.1007/978-3-642-24797-2]
[8]  
Green MA, 2014, NAT PHOTONICS, V8, P506, DOI [10.1038/NPHOTON.2014.134, 10.1038/nphoton.2014.134]
[9]   Proposed reference irradiance spectra for solar energy systems testing [J].
Gueymard, CA ;
Myers, D ;
Emery, K .
SOLAR ENERGY, 2002, 73 (06) :443-467
[10]   The Harvard Clean Energy Project: Large-Scale Computational Screening and Design of Organic Photovoltaics on the World Community Grid [J].
Hachmann, Johannes ;
Olivares-Amaya, Roberto ;
Atahan-Evrenk, Sule ;
Amador-Bedolla, Carlos ;
Sanchez-Carrera, Roel S. ;
Gold-Parker, Aryeh ;
Vogt, Leslie ;
Brockway, Anna M. ;
Aspuru-Guzik, Alan .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2011, 2 (17) :2241-2251