Integer chords and configurations of lattice points

被引:1
作者
Huxley, M. N. [1 ]
Plunkett, S. M. [2 ]
机构
[1] Cardiff Univ, Cardiff CF24 4AG, S Glam, Wales
[2] Univ Bristol, Bristol, Avon, England
来源
INDAGATIONES MATHEMATICAE-NEW SERIES | 2016年 / 27卷 / 02期
关键词
Lattice points; Configurations; Uniform distribution; Difference set; NUMBER;
D O I
10.1016/j.indag.2015.12.004
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The area within a closed convex plane curve C may be estimated by enlarging C by a factor R, translating, counting the set J of integer points inside, and scaling back to the original size. This estimate is accurate when C is three times continuously differentiable in a certain sense. The set J is very sensitive to translations of the curve. We show that as R tends to infinity, the domains in which each set J occurs tend to uniform distribution modulo the integer lattice; this was only known for the special case of the circle. (C) 2016 Royal Dutch Mathematical Society (KWG). Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:534 / 545
页数:12
相关论文
共 14 条
[1]  
[Anonymous], 1974, UNIFORM DISTRIBUTION
[2]  
Graham S., 1991, Van Der Corput'S Method of Exponential Sums, V126
[3]   The number of configurations in lattice point counting II [J].
Huxley, M. N. ;
Zunic, Jovisa .
PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2013, 107 :1331-1352
[4]  
Huxley M.N., 2013, UNIF DISTRIB THEORY, V8, P1
[5]   The number of configurations in lattice point counting I [J].
Huxley, Martin N. ;
Zunic, Jovisa .
FORUM MATHEMATICUM, 2010, 22 (01) :127-152
[6]   Different digitisations of displaced discs [J].
Huxley, MN ;
Zunic, J .
FOUNDATIONS OF COMPUTATIONAL MATHEMATICS, 2006, 6 (02) :255-268
[7]   Exponential sums and lattice points III [J].
Huxley, MN .
PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2003, 87 :591-609
[8]  
Plunkett S.M., 2012, THESIS CARDIFF U
[9]  
Sierpinski W., 1906, PRACE MAT FIZ, V17, P77
[10]  
van der Corput J. G., 1919, Over roosterpunten in het platte vlak