Relationship between the random-phase approximation ground-state total energy and GW quasiparticle energy

被引:10
|
作者
Wang, Lin-Wang [1 ]
机构
[1] Univ Calif Berkeley, Lawrence Berkeley Lab, Computat Res Div, Berkeley, CA 94720 USA
来源
PHYSICAL REVIEW B | 2010年 / 82卷 / 11期
关键词
DENSITY-FUNCTIONAL THEORY; ELECTRON-GAS; EXACT EXCHANGE; SOLIDS;
D O I
10.1103/PhysRevB.82.115111
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A connection between the random-phase-approximation (RPA) total energy E(RPA) and the GW quasiparticle energy (is an element of)GW has been pointed out. More specifically we show that: delta E(RPA)(N)/delta N=is an element of(GW), where N is the total number of electron. The variational property of the RPA total energy is also discussed and the variational equations for the orbital wave functions are derived. We argue that the RPA formalism is a method which can provide both accurate ground-state energies and single quasiparticle energies.
引用
收藏
页数:5
相关论文
共 26 条
  • [1] Ionization energy of atoms obtained from GW self-energy or from random phase approximation total energies
    Bruneval, Fabien
    JOURNAL OF CHEMICAL PHYSICS, 2012, 136 (19)
  • [2] Optimized effective potentials from the random-phase approximation: Accuracy of the quasiparticle approximation
    Riemelmoser, Stefan
    Kaltak, Merzuk
    Kresse, Georg
    JOURNAL OF CHEMICAL PHYSICS, 2021, 154 (15)
  • [3] Piecewise linearity in the GW approximation for accurate quasiparticle energy predictions
    Dauth, Matthias
    Caruso, Fabio
    Kuemmel, Stephan
    Rinke, Patrick
    PHYSICAL REVIEW B, 2016, 93 (12)
  • [4] Enforcing the linear behavior of the total energy with hybrid functionals: Implications for charge transfer, interaction energies, and the random-phase approximation
    Atalla, Viktor
    Zhang, Igor Ying
    Hofmann, Oliver T.
    Ren, Xinguo
    Rinke, Patrick
    Scheffler, Matthias
    PHYSICAL REVIEW B, 2016, 94 (03)
  • [5] Resolution of identity approach for the Kohn-Sham correlation energy within the exact-exchange random-phase approximation
    Bleiziffer, Patrick
    Hesselmann, Andreas
    Goerling, Andreas
    JOURNAL OF CHEMICAL PHYSICS, 2012, 136 (13)
  • [6] Accelerate stochastic calculation of random-phase approximation correlation energy difference with an atom-based correlated sampling
    Chi, Yu-Chieh
    Huang, Chen
    ELECTRONIC STRUCTURE, 2021, 3 (01):
  • [7] Hubbard-U corrected Hamiltonians for non-self-consistent random-phase approximation total-energy calculations: A study of ZnS, TiO2, and NiO
    Patrick, Christopher E.
    Thygesen, Kristian S.
    PHYSICAL REVIEW B, 2016, 93 (03)
  • [8] Ground-state correlation energy of beryllium dimer by the Bethe-Salpeter equation
    Li, Jing
    Duchemin, Ivan
    Blase, Xavier
    Olevano, Valerio
    SCIPOST PHYSICS, 2020, 8 (02):
  • [9] Failure of the random-phase-approximation correlation energy
    Mori-Sanchez, Paula
    Cohen, Aron J.
    Yang, Weitao
    PHYSICAL REVIEW A, 2012, 85 (04):
  • [10] Convergence behavior of the random phase approximation renormalized correlation energy
    Bates, Jefferson E.
    Sensenig, Jonathon
    Ruzsinszky, Adrienn
    PHYSICAL REVIEW B, 2017, 95 (19)