Item Similarity Learning Methods for Collaborative Filtering Recommender Systems

被引:10
|
作者
Xie, Feng [1 ,2 ]
Chen, Zhen [2 ,3 ]
Shang, Jiaxing [1 ]
Huang, Wenliang [4 ]
Li, Jun [2 ,3 ]
机构
[1] Tsinghua Univ, Dept Automat, Beijing 100084, Peoples R China
[2] Tsinghua Univ, Res Inst Informat Technol, Beijing 100084, Peoples R China
[3] TNList, Beijing 100084, Peoples R China
[4] China Unicom Grp, Beijing 100140, Peoples R China
关键词
Recommender Systems; Collaborative Filtering; Similarity Measurement; Matrix Factorization; Stochastic Gradient Descent;
D O I
10.1109/AINA.2015.285
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
As one of the most popular recommender technologies, Collaborative Filtering (CF) has been widely deployed in industry due to its simplicity and interpretability. However, it is facing great challenge to generate accurate similarities between users or items because of data sparsity. This will cause second-order error in the process of using weighted sum as prediction. To alleviate this problem, we propose several methods to learn more accurate item similarities by minimizing the squared prediction error. This optimization problem is solved using Stochastic Gradient Descent. A comprehensive set of experiments on two real-world datasets at error and classification metrics indicate that the proposed methods can achieve comparable or even better performance than other state-of-the-art recommendation methods of Matrix Factorization, and greatly outperform traditional item based CF method. Besides, the proposed methods inherit the interpretability of item based CF, which makes the recommended results more accessible compared to competing methods of Matrix Factorization.
引用
收藏
页码:896 / 903
页数:8
相关论文
共 50 条
  • [21] Collaborative Similarity Embedding for Recommender Systems
    Chen, Chih-Ming
    Wang, Chuan-Ju
    Tsai, Ming-Feng
    Yang, Yi-Hsuan
    WEB CONFERENCE 2019: PROCEEDINGS OF THE WORLD WIDE WEB CONFERENCE (WWW 2019), 2019, : 2637 - 2643
  • [22] Optimizing collaborative filtering recommender systems
    Min, SH
    Han, I
    ADVANCES IN WEB INTELLIGENCE, PROCEEDINGS, 2005, 3528 : 313 - 319
  • [23] A collaborative filtering recommender systems: Survey
    Aljunid, Mohammed Fadhel
    Manjaiah, D. H.
    Hooshmand, Mohammad Kazim
    Ali, Wasim A.
    Shetty, Amrithkala M.
    Alzoubah, Sadiq Qaid
    NEUROCOMPUTING, 2025, 617
  • [24] Collaborative filtering recommender systems taxonomy
    Harris Papadakis
    Antonis Papagrigoriou
    Costas Panagiotakis
    Eleftherios Kosmas
    Paraskevi Fragopoulou
    Knowledge and Information Systems, 2022, 64 : 35 - 74
  • [25] An improvement to collaborative filtering for recommender systems
    Weng, Li-Tung
    Xu, Yue
    Li, Yuefeng
    Nayak, Richi
    International Conference on Computational Intelligence for Modelling, Control & Automation Jointly with International Conference on Intelligent Agents, Web Technologies & Internet Commerce, Vol 1, Proceedings, 2006, : 792 - 795
  • [26] A framework for collaborative filtering recommender systems
    Bobadilla, Jesus
    Hernando, Antonio
    Ortega, Fernando
    Bernal, Jesus
    EXPERT SYSTEMS WITH APPLICATIONS, 2011, 38 (12) : 14609 - 14623
  • [27] Evaluation of Collaborative Filtering for Recommender Systems
    Al-Ghamdi, Maryam
    Elazhary, Hanan
    Mojahed, Aalaa
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2021, 12 (03) : 559 - 565
  • [28] Evaluating collaborative filtering recommender systems
    Herlocker, JL
    Konstan, JA
    Terveen, K
    Riedl, JT
    ACM TRANSACTIONS ON INFORMATION SYSTEMS, 2004, 22 (01) : 5 - 53
  • [29] Collaborative filtering recommender systems taxonomy
    Papadakis, Harris
    Papagrigoriou, Antonis
    Panagiotakis, Costas
    Kosmas, Eleftherios
    Fragopoulou, Paraskevi
    KNOWLEDGE AND INFORMATION SYSTEMS, 2022, 64 (01) : 35 - 74
  • [30] Integrating item category information in collaborative filtering recommender algorithm
    Yao, Zhong
    Lai, Fujun
    ICNC 2008: FOURTH INTERNATIONAL CONFERENCE ON NATURAL COMPUTATION, VOL 7, PROCEEDINGS, 2008, : 33 - +