Reversible thermoflocculation of magnetic core-shell particles induced by remote magnetic heating

被引:25
作者
Gelbrich, Thorsten [1 ]
Marten, Gernot U. [1 ]
Schmidt, Annette M. [1 ]
机构
[1] Univ Dusseldorf, Inst Organ Chem & Makromol Chem, D-40225 Dusseldorf, Germany
关键词
Thermoresponsive magnetic nanoparticles; LCST; Magnetic heating; IRON-OXIDE NANOPARTICLES; 2-(2-METHOXYETHOXY)ETHYL METHACRYLATE; N-ISOPROPYLACRYLAMIDE; POLYMERIZATION; COPOLYMERS; PARAMETERS; HYDROGELS; SURFACE; HYPERTHERMIA; POLYMERS;
D O I
10.1016/j.polymer.2010.02.032
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
We developed multifunctional magnetic polymer brushes with a tailorable thermoresponsive dispersion behavior that can be activated by AC magnetic fields. Via surface-initiated ATRP, magnetic core shell nanoparticles are obtained that are composed of nanosized superparamagnetic iron oxide cores and a copolymer shell. The shell consists of oligo(ethylene glycol) methylether methacrylate (OEGMA) and methoxyethyl methacrylate (MEMA) copolymers that show a lower critical solution temperature (LCST) in water. The hybrid structures are easily dispersible in water at room temperature, and show a reversible thermoflocculation at critical temperatures adjustable by the copolymer composition. The phase separation can alternatively be initiated and recorded by magnetic heating caused by magnetic losses in AC fields. This method offers a convenient way for the remote-controlled heating and agglomeration of disperse systems. (C) 2010 Elsevier Ltd. All rights reserved.
引用
收藏
页码:2818 / 2824
页数:7
相关论文
共 42 条
[11]   Magnetic thermoresponsive core-shell nanoparticles [J].
Gelbrich, T ;
Feyen, M ;
Schmidt, AM .
MACROMOLECULES, 2006, 39 (09) :3469-3472
[12]   The effect of field parameters, nanoparticle properties and immobilization on the specific heating power in magnetic particle hyperthermia [J].
Gloeckl, Gunnar ;
Hergt, Rudolf ;
Zeisberger, Matthias ;
Dutz, Silvio ;
Nagel, Stefan ;
Weitschies, Werner .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2006, 18 (38) :S2935-S2949
[13]   Description and characterization of the novel hyperthermia- and thermoablation-system MFH®300F for clinical magnetic fluid hyperthermia [J].
Gneveckow, U ;
Jordan, A ;
Scholz, R ;
Brüss, V ;
Waldöfner, N ;
Ricke, J ;
Feussner, A ;
Hildebrandt, B ;
Rau, B ;
Wust, P .
MEDICAL PHYSICS, 2004, 31 (06) :1444-1451
[14]   Synthesis of thermally sensitive water-soluble polymethacrylates by living anionic polymerizations of oligo(ethylene glycol) methyl ether methacrylates [J].
Han, S ;
Hagiwara, M ;
Ishizone, T .
MACROMOLECULES, 2003, 36 (22) :8312-8319
[15]   Magnetic particle hyperthermia:: nanoparticle magnetism and materials development for cancer therapy [J].
Hergt, Rudolf ;
Dutz, Silvio ;
Mueller, Robert ;
Zeisberger, Matthias .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2006, 18 (38) :S2919-S2934
[16]  
Heskins M., 1968, J Macromol Sci Chem A, V2, P1441, DOI [DOI 10.1080/10601326808051910, 10.1080/10601326808051910]
[17]   Cellular response to magnetic nanoparticles "PEGylated" via surface-initiated atom transfer radical polymerization [J].
Hu, FX ;
Neoh, KG ;
Cen, L ;
Kang, ET .
BIOMACROMOLECULES, 2006, 7 (03) :809-816
[18]  
Il An, 2006, NANOBIOTECHNOLOGY, V2, P43, DOI [10.1007/s12030-006-0006-7, DOI 10.1007/S12030-006-0006-7]
[19]   Thermosensitive magnetic fluids [J].
Kaiser, Andreas ;
Gelbrich, Thorsten ;
Schmidt, Annette M. .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2006, 18 (38) :S2563-S2580
[20]   Magnetoactive liquid crystal elastomer nanocomposites [J].
Kaiser, Andreas ;
Winkler, Moritz ;
Krause, Simon ;
Finkelmann, Heino ;
Schmidt, Annette M. .
JOURNAL OF MATERIALS CHEMISTRY, 2009, 19 (04) :538-543