Torsion growth over cubic fields of rational elliptic curves with complex multiplication

被引:3
作者
Gonzalez-Jimenez, Enrique [1 ]
机构
[1] Univ Autonoma Madrid, Dept Matemat, Madrid, Spain
来源
PUBLICATIONES MATHEMATICAE DEBRECEN | 2020年 / 97卷 / 1-2期
关键词
elliptic curves; complex multiplication; torsion subgroup; rationals; cubic fields; INTEGRAL J-INVARIANT; POINTS;
D O I
10.5486/PMD.2020.8697
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This article is a contribution to the project of classifying the torsion growth of elliptic curves upon base-change. In this article, we treat the case of elliptic curves defined over the rationals with complex multiplication. For this particular case, we give a description of the possible torsion growth over cubic fields, and a completely explicit description of this growth in terms of some invariants attached to a given elliptic curve.
引用
收藏
页码:63 / 76
页数:14
相关论文
共 31 条
[1]  
Bosma W., 2019, HDB MAGMA FUNCTIONS
[2]   TORSION POINTS ON CM ELLIPTIC CURVES OVER REAL NUMBER FIELDS [J].
Bourdon, Abbey ;
Clark, Pete L. ;
Stankewicz, James .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2017, 369 (12) :8457-8496
[3]   Torsion Subgroups of CM Elliptic Curves over Odd Degree Number Fields [J].
Bourdon, Abbey ;
Pollack, Paul .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2017, 2017 (16) :4923-4961
[4]   Torsion of rational elliptic curves over quartic Galois number fields [J].
Chou, Michael .
JOURNAL OF NUMBER THEORY, 2016, 160 :603-628
[5]  
Clark P. L., 2004, ARXIVMATH0407264
[6]   Computation on elliptic curves with complex multiplication [J].
Clark, Pete L. ;
Corn, Patrick ;
Rice, Alex ;
Stankewicz, James .
LMS JOURNAL OF COMPUTATION AND MATHEMATICS, 2014, 17 (01) :509-535
[7]   Serre's Constant of Elliptic Curves Over the Rationals [J].
Daniels, Harris B. ;
Gonzalez-Jimenez, Enrique .
EXPERIMENTAL MATHEMATICS, 2022, 31 (02) :518-536
[8]   ON THE TORSION OF RATIONAL ELLIPTIC CURVES OVER SEXTIC FIELDS [J].
Daniels, Harris B. ;
Gonzalez-Jimenez, Enrique .
MATHEMATICS OF COMPUTATION, 2020, 89 (321) :411-435
[9]  
Derickx Maarten., Sporadic cubic torsion
[10]  
Dey P. K., 2019, ARXIV190807791