Atomic Ensemble and Electronic Effects in Ag-Rich AgPd Nanoalloy Catalysts for Oxygen Reduction in Alkaline Media

被引:263
作者
Slanac, Daniel A. [1 ]
Hardin, William G. [4 ]
Johnston, Keith P. [1 ,3 ,4 ]
Stevenson, Keith J. [2 ,3 ,4 ]
机构
[1] Univ Texas Austin, Dept Chem Engn, Austin, TX 78712 USA
[2] Univ Texas Austin, Dept Chem & Biochem, Austin, TX 78712 USA
[3] Univ Texas Austin, Ctr Electrochem, Austin, TX 78712 USA
[4] Univ Texas Austin, Texas Mat Inst, Austin, TX 78712 USA
基金
美国国家科学基金会;
关键词
MEMBRANE FUEL-CELLS; ELECTROCATALYTIC ACTIVITY; PDAG/PD(111) SURFACE; BIMETALLIC CATALYSTS; SILVER NANOPARTICLES; ALLOY NANOPARTICLES; LITHIUM BATTERIES; O-2; REDUCTION; AIR BATTERY; PLATINUM;
D O I
10.1021/ja303580b
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The ability to design and characterize uniform, bimetallic alloy nanoparticles, where the less active metal enhances the activity of the more active metal, would be of broad interest in catalysis. Herein, we demonstrate that simultaneous reduction of Ag and Pd precursors provides uniform, Ag-rich AgPd alloy nanoparticles (similar to 5 nm) with high activities for the oxygen reduction reaction (ORR) in alkaline media. The particles are crystalline and uniformly alloyed, as shown by X-ray diffraction and probe corrected scanning transmission electron microscopy. The ORR mass activity per total metal was 60% higher for the AgPd2 alloy relative to pure Pd. The mass activities were 2.7 and 3.2 times higher for Ag9Pd (340 mA/mg(metal)) and Ag4Pd (598 mA/mg(metal)), respectively, than those expected for a linear combination of mass activities of Ag (60 mA/mg(Ag)) and Pd (799 mA/mg(Pd)) particles, based on rotating disk voltammetry. Moreover, these synergy factors reached 5-fold on a Pd mass basis. For silver-rich alloys (Ag <= 4Pd), the particle surface is shown to contain single Pd atoms surrounded by Ag from cyclic voltammetry and CO stripping measurements. This morphology is favorable for the high activity through a combination of modified electronic structure, as shown by XPS, and ensemble effects, which facilitate the steps of oxygen bond breaking and desorption for the ORR. This concept of tuning the heteroatomic interactions on the surface of small nanoparticles with low concentrations of precious metals for high synergy in catalytic activity may be expected to be applicable to a wide variety of nanoalloys.
引用
收藏
页码:9812 / 9819
页数:8
相关论文
共 61 条
[1]   Two-dimensional array of silver nanoparticles [J].
Abe, K ;
Hanada, T ;
Yoshida, Y ;
Tanigaki, N ;
Takiguchi, H ;
Nagasawa, H ;
Nakamoto, M ;
Yamaguchi, T ;
Yase, K .
THIN SOLID FILMS, 1998, 327 :524-527
[2]   Platinum monolayer fuel cell electrocatalysts [J].
Adzic, R. R. ;
Zhang, J. ;
Sasaki, K. ;
Vukmirovic, M. B. ;
Shao, M. ;
Wang, J. X. ;
Nilekar, A. U. ;
Mavrikakis, M. ;
Valerio, J. A. ;
Uribe, F. .
TOPICS IN CATALYSIS, 2007, 46 (3-4) :249-262
[3]   Formation of carbon-supported PtM alloys for low temperature fuel cells: a review [J].
Antolini, E .
MATERIALS CHEMISTRY AND PHYSICS, 2003, 78 (03) :563-573
[4]   Review of gas diffusion cathodes for alkaline fuel cells [J].
Bidault, F. ;
Brett, D. J. L. ;
Middleton, P. H. ;
Brandon, N. P. .
JOURNAL OF POWER SOURCES, 2009, 187 (01) :39-48
[5]   Oxygen reduction on silver low-index single-crystal surfaces in alkaline solution:: Rotating ring DiskAg(hkl) studies [J].
Blizanac, BB ;
Ross, PN ;
Markovic, NM .
JOURNAL OF PHYSICAL CHEMISTRY B, 2006, 110 (10) :4735-4741
[6]   Nanomaterials for rechargeable lithium batteries [J].
Bruce, Peter G. ;
Scrosati, Bruno ;
Tarascon, Jean-Marie .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2008, 47 (16) :2930-2946
[7]   Silver-platinum bimetallic catalysts for oxygen cathodes in chlor-alkali electrolysis - Comparison with pure platinum [J].
Chatenet, M ;
Aurousseau, M ;
Durand, R ;
Andolfatto, F .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2003, 150 (03) :D47-D55
[8]   The promotional effect of gold in catalysis by palladium-gold [J].
Chen, MS ;
Kumar, D ;
Yi, CW ;
Goodman, DW .
SCIENCE, 2005, 310 (5746) :291-293
[9]   Electrocatalytic reduction of oxygen by FePt alloy nanoparticles [J].
Chen, Wei ;
Kim, Jaemin ;
Sun, Shonheng ;
Chen, Shaowei .
JOURNAL OF PHYSICAL CHEMISTRY C, 2008, 112 (10) :3891-3898
[10]   Atomic Ensemble Effects in Electrocatalysis: The Site-Knockout Strategy [J].
Cuesta, Angel .
CHEMPHYSCHEM, 2011, 12 (13) :2375-2385