ON THE CONNECTEDNESS OF THE BRANCH LOCUS OF THE MODULI SPACE OF RIEMANN SURFACES OF LOW GENUS

被引:0
作者
Bartolini, Gabriel [1 ]
Izquierdo, Milagros [1 ]
机构
[1] Linkoping Univ, Inst Matemat, S-58183 Linkoping, Sweden
基金
瑞典研究理事会;
关键词
Moduli spaces; Teichmuller modular group; automorphism group; SYMMETRIES;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let g be an integer >= 3 and let B-g = {X is an element of M-g vertical bar Aut(X) not equal 1(d)}, where M-g denotes the moduli space of compact Riemann surfaces of genus g. Using uniformization of Riemann surfaces by Fuchsian groups and the equisymmetric stratification of the branch locus of the moduli space, we prove that the subloci corresponding to Riemann surfaces with automorphism groups isomorphic to cyclic groups of order 2 and 3 belong to the same connected component. We also prove the connectedness of B-g for g = 5,6, 7 and 8 with the exception of the isolated points given by Kulkarni.
引用
收藏
页码:35 / 45
页数:11
相关论文
共 23 条
[1]   On the connectedness of the branch locus of the moduli space of Riemann surfaces [J].
Bartolini, Gabriel ;
Costa, Antonio F. ;
Izquierdo, Milagros ;
Porto, Ana M. .
REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2010, 104 (01) :81-86
[2]   Finite abelian subgroups of the mapping class group [J].
Broughton, S. Allen ;
Wootton, Aaron .
ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2007, 7 :1651-1697
[3]   THE EQUISYMMETRIC STRATIFICATION OF THE MODULI SPACE AND THE KRULL DIMENSION OF MAPPING CLASS-GROUPS [J].
BROUGHTON, SA .
TOPOLOGY AND ITS APPLICATIONS, 1990, 37 (02) :101-113
[4]   CLASSIFYING FINITE-GROUP ACTIONS ON SURFACES OF LOW GENUS [J].
BROUGHTON, SA .
JOURNAL OF PURE AND APPLIED ALGEBRA, 1991, 69 (03) :233-270
[5]   On symmetries of compact Riemann surfaces with cyclic groups of automorphisms [J].
Bujalance, E. ;
Cirre, F. J. ;
Gamboa, J. M. ;
Gromadzki, G. .
JOURNAL OF ALGEBRA, 2006, 301 (01) :82-95
[6]  
Bujalance E., FULL AUTOMORPHISM GR
[7]  
Bujalance J. A., 2003, REV R ACAD CIENC E A, V97, P69
[8]   On the topological types of symmetries of elliptic-hyperelliptic Riemann surfaces [J].
Bujalance, JA ;
Costa, AF ;
Porto, AM .
ISRAEL JOURNAL OF MATHEMATICS, 2004, 140 (1) :145-155
[9]   ON THE CONNECTEDNESS OF THE LOCUS OF REAL ELLIPTIC-HYPERELLIPTIC RIEMANN SURFACES [J].
Bujalance, Jose A. ;
Costa, Antonio F. ;
Porto, Ana M. .
INTERNATIONAL JOURNAL OF MATHEMATICS, 2009, 20 (08) :1069-1080
[10]  
Costa A., EXISTENCE COMPONENTS