A virtual element method for contact

被引:209
作者
Wriggers, P. [1 ]
Rust, W. T. [1 ]
Reddy, B. D. [2 ]
机构
[1] Leibniz Univ Hannover, Inst Continuum Mech, Appelstr 11, D-30167 Hannover, Germany
[2] Univ Cape Town, Ctr Res Computat & Appl Mech, ZA-7701 Cape Town, South Africa
关键词
Virtual element method (VEM); Contact discretization; Non-conforming mesh; Node-to-node contact; ISOGEOMETRIC ANALYSIS; DEFORMATION CONTACT; MORTAR METHOD; FORMULATION; INTERFACES;
D O I
10.1007/s00466-016-1331-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The problem of contact between two elastic bodies is addressed computationally using the virtual element method (VEM). The use of the VEM allows the use of non-matching meshes for the two bodies, and hence obviates the need for node-to-node contact on the candidate contact interfaces. The contact constraint is imposed using either a Lagrange multiplier or penalty formulation. A number of numerical examples illustrate the robustness and accuracy of the algorithm.
引用
收藏
页码:1039 / 1050
页数:12
相关论文
共 32 条
[1]  
Beirao da Veiga L., 2014, MATH MOD METH APPL S, V24, P1541, DOI DOI 10.1142/S021820251440003X
[2]  
Biabanaki S, 2014, COMPUT METHODS APPL, V269
[3]   A polygonal finite element method for modeling arbitrary interfaces in large deformation problems [J].
Biabanaki, S. O. R. ;
Khoei, A. R. .
COMPUTATIONAL MECHANICS, 2012, 50 (01) :19-33
[4]   Polygonal finite elements for finite elasticity [J].
Chi, Heng ;
Talischi, Cameron ;
Lopez-Pamies, Oscar ;
Paulino, Glaucio H. .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2015, 101 (04) :305-328
[5]   BASIC PRINCIPLES OF VIRTUAL ELEMENT METHODS [J].
da Veiga, L. Beirao ;
Brezzi, F. ;
Cangiani, A. ;
Manzini, G. ;
Marini, L. D. ;
Russo, A. .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2013, 23 (01) :199-214
[6]   VIRTUAL ELEMENTS FOR LINEAR ELASTICITY PROBLEMS [J].
da Veiga, L. Beirao ;
Brezzi, F. ;
Marini, L. D. .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2013, 51 (02) :794-812
[7]   A mortar formulation for 3D large deformation contact using NURBS-based isogeometric analysis and the augmented Lagrangian method [J].
De Lorenzis, L. ;
Wriggers, P. ;
Zavarise, G. .
COMPUTATIONAL MECHANICS, 2012, 49 (01) :1-20
[8]   A large deformation frictional contact formulation using NURBS-based isogeometric analysis [J].
De Lorenzis, L. ;
Temizer, I. ;
Wriggers, P. ;
Zavarise, G. .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2011, 87 (13) :1278-1300
[9]   Stability and patch test performance of contact discretizations and a new solution algorithm [J].
El-Abbasi, N ;
Bathe, KJ .
COMPUTERS & STRUCTURES, 2001, 79 (16) :1473-1486
[10]   Frictionless 2D Contact formulations for finite deformations based on the mortar method [J].
Fischer, KA ;
Wriggers, P .
COMPUTATIONAL MECHANICS, 2005, 36 (03) :226-244