Stochastic modeling of animal epidemics using data collected over three different spatial scales

被引:9
|
作者
Rorres, Chris [1 ]
Pelletier, Sky T. K. [1 ]
Smith, Gary [1 ]
机构
[1] Univ Penn, Sch Vet Med, Sect Epidemiol & Publ Hlth, Kennett Sq, PA 19348 USA
关键词
Estimators; Avian influenza; Parameter estimation; Mathematical models; ZIP-codes; VACCINATION STRATEGIES; FOOT; DISTRIBUTIONS; DISEASE; UK;
D O I
10.1016/j.epidem.2011.02.003
中图分类号
R51 [传染病];
学科分类号
100401 ;
摘要
A stochastic, spatial, discrete-time, SEIR model of avian influenza epidemics among poultry farms in Pennsylvania is formulated. Using three different spatial scales wherein all the birds within a single farm, ZIP code, or county are clustered into a single point, we obtain three different views of the epidemics. For each spatial scale, two parameters within the viral-transmission kernel of the model are estimated using simulated epidemic data. We show that simulated epidemics modeled using data collected on the farm and ZIP-code levels behave similar to the actual underlying epidemics, but this is not true using data collected on the county level. Such analyses of data collected on different spatial scales are useful in formulating intervention strategies to control an ongoing epidemic (e. g., vaccination schedules and culling policies). (C) 2011 Elsevier B. V. All rights reserved.
引用
收藏
页码:61 / 70
页数:10
相关论文
共 17 条
  • [1] Estimating the kernel parameters of premises-based stochastic models of farmed animal infectious disease epidemics using limited, incomplete, or ongoing data
    Rorres, Chris
    Pelletier, Sky T. K.
    Keeling, Matt J.
    Smith, Gary
    THEORETICAL POPULATION BIOLOGY, 2010, 78 (01) : 46 - 53
  • [2] The spatial diffusion of norovirus epidemics over three seasons in Tokyo
    Inaida, S.
    Shobugawa, Y.
    Matsuno, S.
    Saito, R.
    Suzuki, H.
    EPIDEMIOLOGY AND INFECTION, 2015, 143 (03) : 522 - 528
  • [3] Geospatial and Temporal Analyses of Bean pod mottle virus Epidemics in Soybean at Three Spatial Scales
    Byamukama, E.
    Eggenberger, S. K.
    Coelho-Netto, R. A.
    Robertson, A. E.
    Nutter, F. W., Jr.
    PHYTOPATHOLOGY, 2014, 104 (04) : 365 - 378
  • [4] Incorporating Auxiliary Data of Different Spatial Scales for Spatial Prediction of Soil Nitrogen Using Robust Residual Cokriging (RRCoK)
    Qu, Mingkai
    Guang, Xu
    Liu, Hongbo
    Zhao, Yongcun
    Huang, Biao
    AGRONOMY-BASEL, 2021, 11 (12):
  • [5] Using Stochastic Modeling to Predict the Effect of Culling and Colony Dispersal of Bats on Zoonotic Viral Epidemics
    Jeong, Jaewoon
    McCallum, Hamish
    VECTOR-BORNE AND ZOONOTIC DISEASES, 2021, 21 (05) : 369 - 377
  • [6] Predicted effects of climate factors on mountain species are not uniform over different spatial scales
    Brambilla, Mattia
    Gustin, Marco
    Cento, Michele
    Ilahiane, Luca
    Celada, Claudio
    JOURNAL OF AVIAN BIOLOGY, 2019, 50 (09)
  • [7] Linking climate change to urban storm drainage system design: An innovative approach to modeling of extreme rainfall processes over different spatial and temporal scales
    Truong-Huy Nguyen
    Van-Thanh-Van Nguyen
    JOURNAL OF HYDRO-ENVIRONMENT RESEARCH, 2020, 29 : 80 - 95
  • [8] Comparison of Performance on the Clock Drawing Test Using Three Different Scales in Dialysis Patients
    Muayqil, Taim Abdullah
    Tarakji, Ahmad Raed
    Khattab, Abdullah Mohammad
    Balbaid, Nasser Talal
    Al-Dawalibi, Ahmad Mohedeen
    Alqarni, Sami Ahmed
    Hazazi, Reema Ali
    Alanazy, Mohammed H.
    BEHAVIOURAL NEUROLOGY, 2020, 2020
  • [9] Modeling Skewed Spatial Data Using a Convolution of Gaussian and Log-Gaussian Processes
    Zareifard, Hamid
    Khaledi, Majid Jafari
    Rivaz, Firoozeh
    Vahidi-Asl, Mohammad Q.
    BAYESIAN ANALYSIS, 2018, 13 (02): : 531 - 557
  • [10] Investigating the Complexity of Spatial Interactions between Different Administrative Units in China Using Flickr Data
    Zhu, Wei
    Ma, Ding
    Zhao, Zhigang
    Guo, Renzhong
    SUSTAINABILITY, 2020, 12 (22) : 1 - 12