Symmetric monoidal structure on non-commutative motives

被引:40
作者
Cisinski, Denis-Charles [1 ]
Tabuada, Goncalo [2 ,3 ]
机构
[1] Univ Toulouse 3, Inst Math Toulouse, F-31062 Toulouse 9, France
[2] MIT, Dept Math, Cambridge, MA 02139 USA
[3] FCT UNL Quinta Torre, Dept Matemat, P-2829516 Caparica, Portugal
关键词
Non-commutative motives; Non-commutative algebraic geometry; Non-connective algebraic K-theory; Secondary K-theory; Hochschild homology; Negative cyclic homology; Periodic cyclic homology; CYCLIC HOMOLOGY; K-THEORY; MODEL CATEGORIES; ADDITIVITY;
D O I
10.1017/is011011005jkt169
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article we further the study of non-commutative motives, initiated in [12, 43]. Our main result is the construction of a symmetric monoidal structure on the localizing motivator Mot(dg)(loc) of dg categories. As an application, we obtain : (1) a computation of the spectra of morphisms in Mot(dg)(loc) in terms of non-connective algebraic K-theory; (2) a fully-faithful embedding of Kontsevich's category KMMk of non-commutative mixed motives into the base category Mot(dg)(loc) (e) of the localizing motivator; (3) a simple construction of the Chern character maps from non-connective algebraic K-theory to negative and periodic cyclic homology; (4) a precise connection between Toen's secondary K-theory and the Grothendieck ring of KMMk; (5) a description of the Euler characteristic in KMMk in terms of Hochschild homology.
引用
收藏
页码:201 / 268
页数:68
相关论文
共 56 条
[41]   A Quillen model structure on the category of dg categories. [J].
Tabuada, G .
COMPTES RENDUS MATHEMATIQUE, 2005, 340 (01) :15-19
[42]   Higher K-theory via universal invariants [J].
Tabuada, Goncalo .
DUKE MATHEMATICAL JOURNAL, 2008, 145 (01) :121-206
[43]   Matrix Invariants of Spectral Categories [J].
Tabuada, Goncalo .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2010, 2010 (13) :2459-2511
[44]   Generalized spectral categories, topological Hochschild homology and trace maps [J].
Tabuada, Goncalo .
ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2010, 10 (01) :137-213
[45]   Moduli of objects in dg-categories [J].
Toen, Bertrand ;
Vaquie, Michel .
ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 2007, 40 (03) :387-444
[46]   The homotopy theory of dg-categories and derived Morita theory [J].
Toen, Bertrand .
INVENTIONES MATHEMATICAE, 2007, 167 (03) :615-667
[47]  
Verdier J.-L., 1996, ASTERISQUE, V239
[48]   Cyclic homology for schemes [J].
Weibel, C .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1996, 124 (06) :1655-1662
[49]  
[No title captured]
[50]  
[No title captured]