NEURAL NETWORK-BASED DERIVATION OF EFFICIENT HIGH-ORDER RUNGE-KUTTA-NYSTROM PAIRS FOR THE INTEGRATION OF ORBITS

被引:0
作者
Famelis, I. Th. [1 ]
机构
[1] TEI Athens, Dept Math, GR-12210 Athens, Greece
来源
INTERNATIONAL JOURNAL OF MODERN PHYSICS C | 2011年 / 22卷 / 12期
关键词
Runge-Kutta-Nystrom; Kepler problem; neural networks; differential evolution;
D O I
10.1142/S0129183111016919
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We use a neural network approach to derive a Runge-Kutta-Nystrom pair of orders 8(6) for the integration of orbital problems. We adopt a differential evolution optimization technique to choose the free parameters of the method's family. We train the method to perform optimally in a specific test orbit from the Kepler problem for a specific tolerance. Our measure of efficiency involves the global error and the number of function evaluations. Other orbital problems are solved to test the new pair.
引用
收藏
页码:1309 / 1316
页数:8
相关论文
共 16 条
[1]  
[Anonymous], 2008, Numerical Methods for Ordinary Differential Equations
[2]   FAMILIES OF RUNGE-KUTTA-NYSTROM FORMULAS [J].
DORMAND, JR ;
ELMIKKAWY, MEA ;
PRINCE, PJ .
IMA JOURNAL OF NUMERICAL ANALYSIS, 1987, 7 (02) :235-250
[3]   HIGH-ORDER EMBEDDED RUNGE-KUTTA-NYSTROM FORMULAS [J].
DORMAND, JR ;
ELMIKKAWY, MEA ;
PRINCE, PJ .
IMA JOURNAL OF NUMERICAL ANALYSIS, 1987, 7 (04) :423-430
[4]  
Hairer Ernst, 2000, Solving Ordinary Differential Equations I, Nonstiff Problems
[5]  
JACKIEWICZ Z., 2009, GEN LINEAR METHODS O
[6]  
Lubich C., 2010, Springer Series in Computational Mathematics, V31
[7]   High phase-lag-order Runge-Kutta and Nystrom pairs [J].
Papakostas, SN ;
Tsitouras, C .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1999, 21 (02) :747-763
[8]   New embedded explicit pairs of exponentially fitted Runge-Kutta methods [J].
Paris, A. ;
Randez, L. .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2010, 234 (03) :767-776
[9]  
PRICE K, 2006, DIFFERENTIAL EVOLUTI, DOI 10.1007/3-540-31306-0
[10]  
SHARP PW, J COMPUT AP IN PRESS