Fractional activation functions in feed-forward artificial neural networks

被引:0
|
作者
Ivanov, Alexander [1 ]
机构
[1] Burgas Free Univ, Fac Comp Sci & Engn, Burgas 8001, Bulgaria
关键词
fractional activation functions; feed-forward neural networks; logistic function;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Fractional calculus is an important tool for analysis, including physics, biology and artificial intelligence. For some functions, alternative fractional definitions have been developed - the exponential function, trigonometric functions, hyperbolic tangent. But for others, like the logistic sigmoid function, fractional equivalents are not yet studied. Most of the mentioned functions are used as activation functions in artificial neural networks. Using the fractional activation functions provides the networks with more tunable hyperparameters. In this paper, analysis of some fractional functions is made, and the effects of different choices of function parameter values is examined in terms of learning and precision of feed-forward artificial neral networks.
引用
收藏
页数:4
相关论文
共 50 条
  • [41] Optimal identification using feed-forward neural networks
    Vergara, V
    Sinne, S
    Moraga, C
    FROM NATURAL TO ARTIFICIAL NEURAL COMPUTATION, 1995, 930 : 1052 - 1059
  • [42] Optimizing FPGA implementation of Feed-Forward Neural Networks
    Oniga, S.
    Tisan, A.
    Mic, D.
    Buchman, A.
    Vida-Ratiu, A.
    PROCEEDINGS OF THE 11TH INTERNATIONAL CONFERENCE ON OPTIMIZATION OF ELECTRICAL AND ELECTRONIC EQUIPMENT, VOL IV, 2008, : 31 - 36
  • [43] Evapotranspiration estimation using feed-forward neural networks
    Kisi, Ozgur
    NORDIC HYDROLOGY, 2006, 37 (03) : 247 - 260
  • [44] SafetyCage: A misclassification detector for feed-forward neural networks
    Johnsen, Pal Vegard
    Remonato, Filippo
    NORTHERN LIGHTS DEEP LEARNING CONFERENCE, VOL 233, 2024, 233 : 113 - 119
  • [45] FEED-FORWARD NEURAL NETWORKS TO ESTIMATE STOKES PROFILES
    Raygoza-Romero, Joan Manuel
    Nava, Irvin Hussein Lopez
    Ramirez-Velez, Julio Cesar
    REVISTA MEXICANA DE ASTRONOMIA Y ASTROFISICA, 2024, 60 (02) : 343 - 354
  • [46] Invariance priors for Bayesian feed-forward neural networks
    von Toussaint, Udo
    Gori, Silvio
    Dose, Volker
    NEURAL NETWORKS, 2006, 19 (10) : 1550 - 1557
  • [47] An Efficient Hardware Implementation of Feed-Forward Neural Networks
    Tamás Szab#x00F3;
    Gábor Horv#x00E1;th
    Applied Intelligence, 2004, 21 : 143 - 158
  • [48] The errors in simultaneous approximation by feed-forward neural networks
    Xie, Tingfan
    Cao, Feilong
    NEUROCOMPUTING, 2010, 73 (4-6) : 903 - 907
  • [49] Modeling a scrubber using feed-forward neural networks
    Milosavljevic, N
    Heikkilä, P
    TAPPI JOURNAL, 1999, 82 (03): : 197 - 201
  • [50] Estimating Model Complexity of Feed-Forward Neural Networks
    Landsittel, Douglas
    JOURNAL OF MODERN APPLIED STATISTICAL METHODS, 2009, 8 (02) : 488 - 504