Moshinsky's shutter problem: an initial-value problem for the Klein-Gordon equation

被引:0
作者
Martin, P. A. [1 ]
Kowalski, F. V. [2 ]
机构
[1] Colorado Sch Mines, Dept Appl Math & Stat, Golden, CO 80401 USA
[2] Colorado Sch Mines, Dept Phys, Golden, CO 80401 USA
关键词
Klein-Gordon equation; asymptotic analysis; method of stationary phase; non-uniqueness;
D O I
10.1080/00036811.2011.628942
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Moshinsky's problem is formulated and solved as a convolution integral. The initial data are discontinuous, giving the possibility of non-uniqueness. Asymptotic properties of the solution are deduced, using variants of the method of stationary phase. Comparisons are made with solutions of analogous problems for the one-dimensional wave equation and the Schrodinger equation.
引用
收藏
页码:309 / 322
页数:14
相关论文
共 17 条
  • [1] Multi-precision laplace transform inversion
    Abate, J
    Valkó, PP
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2004, 60 (05) : 979 - 993
  • [2] Abramowitz M., 1964, HDB MATH FUNCTIONS, V55
  • [3] Ahluwalia D. S., 1974, Archive for Rational Mechanics and Analysis, V54, P340, DOI 10.1007/BF00249195
  • [4] [Anonymous], 2003, APPL PARTIAL DIFFERE
  • [5] Babich V.M., 1985, J MATH SCI, V28, P628
  • [6] Bleistein N., 1986, ASYMPTOTIC EXPANSION
  • [8] Quantum transients
    del Campo, A.
    Garcia-Calderon, G.
    Muga, J. G.
    [J]. PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2009, 476 (1-3): : 1 - 50
  • [9] Tunneling dynamics in relativistic and nonrelativistic wave equations -: art. no. 032101
    Delgado, F
    Muga, JG
    Ruschhaupt, A
    García-Calderón, G
    Villavicencio, J
    [J]. PHYSICAL REVIEW A, 2003, 68 (03): : 9
  • [10] Low-energy relativistic effects and nonlocality in time-dependent tunneling
    García-Calderón, G
    Rubio, A
    Villavicencio, J
    [J]. PHYSICAL REVIEW A, 1999, 59 (03): : 1758 - 1761