Solution-Processed, Silver-Doped NiOx as Hole Transporting Layer for High-Efficiency Inverted Perovskite Solar Cells

被引:103
|
作者
Zheng, Jianghui [1 ,2 ]
Hu, Long [1 ]
Yun, Jae S. [1 ]
Zhang, Meng [1 ]
Lau, Cho Fai Jonathan [1 ]
Bing, Jueming [1 ]
Deng, Xiaofan [1 ]
Ma, Qingshan [1 ]
Cho, Yongyoon [1 ]
Fu, Weifei [3 ]
Chen, Chao [2 ]
Green, Martin A. [1 ]
Huang, Shujuan [1 ]
Ho-Baillie, Anita W. Y. [1 ]
机构
[1] Univ New South Wales, Australian Ctr Adv Photovolta, Sch Photovolta & Renewable Energy Engn, Sydney, NSW 2052, Australia
[2] Xiamen Univ, Coll Energy, Xiamen 361005, Peoples R China
[3] Zhejiang Univ, Dept Polymer Sci & Engn, State Key Lab Silicon Mat, Hangzhou 310027, Zhejiang, Peoples R China
来源
ACS APPLIED ENERGY MATERIALS | 2018年 / 1卷 / 02期
关键词
hole transport layer; NiOx; Ag-doped NiOx; perovskite solar cells; inverted structure; IMPROVED AIR STABILITY; HIGH-PERFORMANCE; INTERFACIAL LAYER; SEQUENTIAL DEPOSITION; TEMPERATURE; EXTRACTION; FILM; FORMAMIDINIUM; HYSTERESIS; CH3NH3PBI3;
D O I
10.1021/acsaem.7b00129
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
NiOx is as a promising hole transporting layer (HTL) for perovskite solar cells (PSCs) due to its good stability, large bandgap, and deep valence band. The use of NiOx as a HTL for "inverted" PSC as part of a monolithic silicon/perovskite tandem solar cell is also suitable when the processing temperature is suitably low. Solution-processed NiOx at low temperature for PSCs remains to be improved due to the relatively low short-circuit current density (J(sc)) and fill factor (FF) of reported devices. In this work, the use of Ag-doping is reported for solution-processed NiOx film at 300 degrees C for inverted planar PSCs. We have shown that Ag-doping has no negative effect on the optical transmittance and morphology of the NiOx film and the overlying perovskite film. In addition, Ag-doping is effective in improving conductivity, improving carrier extraction, and enhancing the p-type property of the NiOx film confirmed by electrical characterization, photoluminescence measurements, and ultraviolet photoelectron spectroscopy. These improvements result in better devices based on the ITO/Ag:NiOx/CH3NH3PbI3/PCBM/BCP/Ag structure with improved average FF (from 69% to 75%), enhanced average J(SC) (by 1.2 mA/cm(2) absolute) and enhanced average V-OC (by 29 mV absolute). The average efficiency of these devices is 16.3% while the best device achieves a PCE of 17.3% with negligible hysteresis and a stabilized efficiency of 17.1%. In comparison, devices that use undoped NiOx have an average efficiency of 13.5%. This work demonstrates that silver is a promising doping material for NiOx by a simple solution process for high-performance inverted PSCs and perovskite tandems.
引用
收藏
页码:561 / 570
页数:19
相关论文
共 50 条
  • [31] High-Performance and Environmentally Stable Planar Heterojunction Perovskite Solar Cells Based on a Solution-Processed Copper-Doped Nickel Oxide Hole-Transporting Layer
    Kim, Jong H.
    Liang, Po-Wei
    Williams, Spencer T.
    Cho, Namchul
    Chueh, Chu-Chen
    Glaz, Micah S.
    Ginger, David S.
    Jen, Alex K. -Y.
    ADVANCED MATERIALS, 2015, 27 (04) : 695 - 701
  • [32] Solution-processed cathode interfacial layer materials for high-efficiency polymer solar cells
    Xiao, Biao
    Wu, Hongbin
    Cao, Yong
    MATERIALS TODAY, 2015, 18 (07) : 385 - 394
  • [33] Surface modified NiOx as an efficient hole transport layer in inverted perovskite solar cells
    Yang, Yan
    Chen, Jieda
    Li, Chengyuan
    Zhang, Wei
    Zhang, Shan-Ting
    Li, Dongdong
    Zhang, Jiafan
    Ding, Yi'an
    Lu, Linfeng
    Song, Ye
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2022, 33 (23) : 18522 - 18532
  • [34] Solution-processed perovskite solar cells
    Chang, Jian-hui
    Liu, Kun
    Lin, Si-yuan
    Yuan, Yong-bo
    Zhou, Cong-hua
    Yang, Jun-liang
    JOURNAL OF CENTRAL SOUTH UNIVERSITY, 2020, 27 (04) : 1104 - 1133
  • [35] Low-Temperature Solution-Processed CuCrO2 Hole-Transporting Layer for Efficient and Photostable Perovskite Solar Cells
    Zhang, Hua
    Wang, Huan
    Zhu, Hongmei
    Chueh, Chu-Chen
    Chen, Wei
    Yang, Shihe
    Jen, Alex K-Y
    ADVANCED ENERGY MATERIALS, 2018, 8 (13)
  • [36] Room-temperature and solution-processed copper iodide as the hole transport layer for inverted planar perovskite solar cells
    Sun, Weihai
    Ye, Senyun
    Rao, Haixiao
    Li, Yunlong
    Liu, Zhiwei
    Xiao, Lixin
    Chen, Zhijian
    Bian, Zuqiang
    Huang, Chunhui
    NANOSCALE, 2016, 8 (35) : 15954 - 15960
  • [37] Efficient Inverted Planar Perovskite Solar Cells Using Ultraviolet/Ozone-Treated NiOx as the Hole Transport Layer
    Wang, Tun
    Ding, Dong
    Zheng, Hao
    Wang, Xin
    Wang, Jiayuan
    Liu, Hong
    Shen, Wenzhong
    SOLAR RRL, 2019, 3 (06)
  • [38] High efficiency hysteresis-less inverted planar heterojunction perovskite solar cells with a solution-derived NiOx hole contact layer
    Yin, Xingtian
    Que, Meidan
    Xing, Yonglei
    Que, Wenxiu
    JOURNAL OF MATERIALS CHEMISTRY A, 2015, 3 (48) : 24495 - 24503
  • [39] Solution-Processed Planar Perovskite Solar Cell Without a Hole Transport Layer
    Jin, Yi
    Chumanov, George
    ACS APPLIED MATERIALS & INTERFACES, 2015, 7 (22) : 12015 - 12021
  • [40] NiOx Hole Transport Layer for Perovskite Solar Cells with Improved Stability and Reproducibility
    Islam, Md. Bodiul
    Yanagida, Masatoshi
    Shirai, Yasuhiro
    Nabetani, Yoichi
    Miyano, Kenjiro
    ACS OMEGA, 2017, 2 (05): : 2291 - 2299