Robust heterodimensional cycles and C1-generic dynamics

被引:80
|
作者
Bonatti, Christian [1 ]
Diaz, Lorenzo J. [2 ]
机构
[1] Inst Math Bourgogne, F-21078 Dijon, France
[2] Pontificia Univ Catolica Rio de Janeiro, Dept Matemat, BR-22458900 Rio De Janeiro, Brazil
关键词
axiom A; chain recurrence class; dominated splitting; heterodimensional cycle; homoclinic class; hyperbolicity;
D O I
10.1017/S1474748008000030
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A diffeomorphism f has a heterodimensional cycle if there are (transitive) hyperbolic sets Lambda and Sigma having different indices (dimension of the unstable bundle) such that the unstable manifold of Lambda meets the stable one of Sigma and vice versa. This cycle has co-index 1 if index(Lambda) = index(Sigma) +/- 1. This cycle is robust if, for every g close to f, the continuations of Lambda and Sigma for g have a heterodimensional cycle. We prove that any co-index 1 heterodimensional cycle associated with a pair of hyperbolic saddles generates C-1-robust heterodimensioal cycles. Therefore, in dimension three, every heterodimensional cycle generates robust cycles. We also derive some consequences from this result for C-1-generic dynamics (in any dimension). Two of such consequences are the following. For tame diffeomorphisms (generic diffeomorphisms with finitely many chain recurrence classes) there is the following dichotomy: either the system is hyperbolic or it has a robust heterodimensional cycle. Moreover, any chain recurrence class containing saddles having different indices has a robust cycle.
引用
收藏
页码:469 / 525
页数:57
相关论文
共 30 条
  • [1] Robust Heterodimensional Cycles and Tame Dynamics
    Diaz, Lorenzo J.
    NEW TRENDS IN MATHEMATICAL PHYSICS, 2009, : 211 - 229
  • [2] Homoclinic tangencies leading to robust heterodimensional cycles
    Barrientos, Pablo G.
    Diaz, Lorenzo J.
    Perez, Sebastian A.
    MATHEMATISCHE ZEITSCHRIFT, 2022, 302 (01) : 519 - 558
  • [3] ON THE INDEX PROBLEM OF C1-GENERIC WILD HOMOCLINIC CLASSES IN DIMENSION THREE
    Shinohara, Katsutoshi
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2011, 31 (03) : 913 - 940
  • [4] Generic diffeomorphisms away from homoclinic tangencies and heterodimensional cycles
    Lan Wen*
    Bulletin of the Brazilian Mathematical Society, 2004, 35 : 419 - 452
  • [5] Generic diffieomorphisms away from homoclinic tangencies and heterodimensional cycles
    Wen, L
    BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2004, 35 (03): : 419 - 452
  • [6] NONTRANSVERSE HETERODIMENSIONAL CYCLES: STABILISATION AND ROBUST TANGENCIES
    Diaz, Lorenzo J.
    Perez, Sebastian A.
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2023, 376 (02) : 891 - 944
  • [7] Homoclinic tangencies leading to robust heterodimensional cycles
    Pablo G. Barrientos
    Lorenzo J. Díaz
    Sebastián A. Pérez
    Mathematische Zeitschrift, 2022, 302 : 519 - 558
  • [8] NONTRANSVERSE HETERODIMENSIONAL CYCLES: STABILISATION AND ROBUST TANGENCIES
    Diaz, Lorenzo J.
    Perez, Sebastian A.
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2022,
  • [9] Dynamics Near the Heterodimensional Cycles with Nonhyperbolic Equilibrium
    Liu Xingbo
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2018, 28 (01):
  • [10] Trying to Characterize Robust and Generic Dynamics
    Pujals, Enrique R.
    NEW TRENDS IN MATHEMATICAL PHYSICS, 2009, : 549 - 563