Phase stability of ZrO2 9.5Y2O3 5.6Yb2O3 5.2Gd2O3 compound at 1100 °C and 1300 °C for advanced TBC applications

被引:56
作者
Bahamirian, M. [1 ]
Hadavi, S. M. M. [2 ]
Farvizi, M. [1 ]
Rahimipour, M. R. [1 ]
Keyvani, A. [3 ]
机构
[1] Mat & Energy Res Ctr, Dept Ceram, Karaj, Iran
[2] Univ Tarbiat Modares, Dept Mat Engn, Tehran, Iran
[3] Shahrekord Univ, Fac Engn & Technol, Dept Met & Mat Engn, Shahrekord, Iran
基金
美国国家科学基金会;
关键词
Co-precipitation method; Phase stability; YSZ; ZrO2 9.5Y(2)O(3) 5.6Yb(2)O(3) 5.2Gd(2)O(3); T-prime ZrO2 phase; THERMAL BARRIER COATINGS; THERMOPHYSICAL PROPERTIES; ZIRCONIA POWDERS; YSZ; MICROSTRUCTURE; TRANSFORMATION; CONDUCTIVITY; EVOLUTION; CERAMICS; GD2ZR2O7;
D O I
10.1016/j.ceramint.2019.01.018
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Phase instability of conventional zirconia compounds (YSZ: Yttria Stabilized Zirconia) at temperatures above 1200 degrees C, is one of the important reasons of thermal barrier coatings (TBCs) destruction in new generation of turbines. In this study, ZGYbY: ZrO2 9.5Y(2)O(3) 5.6Yb(2)O(3) 5.2Gd(2)O(3) powder, as a new material for TBC applications, was synthesized through a chemical co-precipitation method to enhance the phase stability of the YSZ at higher temperatures. A cyclic method with 5 h cycles at 1100 degrees C and 1300 degrees C for 50 h was employed to investigate the phase stability of YSZ and ZGYbY compounds. X-ray diffraction (XRD) and field emission scanning electron microscopy (FESEM) analysis confirmed the phase stability of both of powders during thermal cycling at 1100 degrees C for 50 h. The results of thermal cycling at 1300 degrees C for 50 h indicated that ZGYbY powder exhibits excellent phase stability due to full retention of t-prime zirconia phase and restriction of tetragonal to monoclinic phase transition upon cooling. However, in the case of YSZ powder, after thermal cycling at similar condition, it decomposed to two new phases including cubic and monoclinic zirconia with 62 wt% and 38 wt%, respectively.
引用
收藏
页码:7344 / 7350
页数:7
相关论文
共 39 条
[21]   Synthesis and Phase Stability of Scandia, Gadolinia, and Ytterbia Co-doped Zirconia for Thermal Barrier Coating Application [J].
Li, Qi-Lian ;
Cui, Xiang-Zhong ;
Li, Shu-Qing ;
Yang, Wei-Hua ;
Wang, Chun ;
Cao, Qian .
JOURNAL OF THERMAL SPRAY TECHNOLOGY, 2015, 24 (1-2) :136-143
[22]   Synthesis and Thermal Stability of Nontransformable Tetragonal (ZrO2)0.96(REO1.5)0.04 (RE=Sc3+, Y3+) Nanocrystals [J].
Loghman-Estarki, Mohammad Reza ;
Razavi, Reza Shoja ;
Edris, Hossein .
DIFFUSION IN SOLIDS AND LIQUIDS VIII, 2013, 334-335 :60-+
[23]  
Metco S., 2015, DSMTS00994
[24]   Synthesis of reactive neodymia-doped zirconia powders by the sol-gel technique [J].
Muccillo, ENS ;
Souza, ECC ;
Muccillo, R .
JOURNAL OF ALLOYS AND COMPOUNDS, 2002, 344 (1-2) :175-178
[25]   Correlations Between Microstructure and Mechanical Properties of Air Plasma-Sprayed Thermal Barrier Coatings Exposed to a High Temperature [J].
Osorio, Julian D. ;
Maya, Deiby ;
Barrios, Augusto C. ;
Lopera, Adrian ;
Jimenez, Freddy ;
Meza, Juan M. ;
Hernandez-Ortiz, Juan P. ;
Toro, Alejandro .
JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2013, 96 (12) :3901-3907
[26]   Advanced structural ceramics in aerospace propulsion [J].
Padture, Nitin P. .
NATURE MATERIALS, 2016, 15 (08) :804-809
[27]   Phase stability, sintering, and thermal conductivity of plasma-sprayed ZrO2-Gd2O3 compositions for potential thermal barrier coating applications [J].
Rahaman, MN ;
Gross, JR ;
Dutton, RE ;
Wang, H .
ACTA MATERIALIA, 2006, 54 (06) :1615-1621
[28]  
Sakuma T., 1998, Key Engineering Materials, V153-154, P75
[29]   CUBIC-TO-TETRAGONAL (T') TRANSFORMATION IN ZIRCONIA-CONTAINING SYSTEMS [J].
SHEU, TS ;
TIEN, TY ;
CHEN, IW .
JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 1992, 75 (05) :1108-1116
[30]   Sintering behavior of nanocrystalline zirconia prepared by chemical vapor synthesis [J].
Srdic, VV ;
Winterer, M ;
Hahn, H .
JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2000, 83 (04) :729-736