Phase stability of ZrO2 9.5Y2O3 5.6Yb2O3 5.2Gd2O3 compound at 1100 °C and 1300 °C for advanced TBC applications

被引:56
作者
Bahamirian, M. [1 ]
Hadavi, S. M. M. [2 ]
Farvizi, M. [1 ]
Rahimipour, M. R. [1 ]
Keyvani, A. [3 ]
机构
[1] Mat & Energy Res Ctr, Dept Ceram, Karaj, Iran
[2] Univ Tarbiat Modares, Dept Mat Engn, Tehran, Iran
[3] Shahrekord Univ, Fac Engn & Technol, Dept Met & Mat Engn, Shahrekord, Iran
基金
美国国家科学基金会;
关键词
Co-precipitation method; Phase stability; YSZ; ZrO2 9.5Y(2)O(3) 5.6Yb(2)O(3) 5.2Gd(2)O(3); T-prime ZrO2 phase; THERMAL BARRIER COATINGS; THERMOPHYSICAL PROPERTIES; ZIRCONIA POWDERS; YSZ; MICROSTRUCTURE; TRANSFORMATION; CONDUCTIVITY; EVOLUTION; CERAMICS; GD2ZR2O7;
D O I
10.1016/j.ceramint.2019.01.018
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Phase instability of conventional zirconia compounds (YSZ: Yttria Stabilized Zirconia) at temperatures above 1200 degrees C, is one of the important reasons of thermal barrier coatings (TBCs) destruction in new generation of turbines. In this study, ZGYbY: ZrO2 9.5Y(2)O(3) 5.6Yb(2)O(3) 5.2Gd(2)O(3) powder, as a new material for TBC applications, was synthesized through a chemical co-precipitation method to enhance the phase stability of the YSZ at higher temperatures. A cyclic method with 5 h cycles at 1100 degrees C and 1300 degrees C for 50 h was employed to investigate the phase stability of YSZ and ZGYbY compounds. X-ray diffraction (XRD) and field emission scanning electron microscopy (FESEM) analysis confirmed the phase stability of both of powders during thermal cycling at 1100 degrees C for 50 h. The results of thermal cycling at 1300 degrees C for 50 h indicated that ZGYbY powder exhibits excellent phase stability due to full retention of t-prime zirconia phase and restriction of tetragonal to monoclinic phase transition upon cooling. However, in the case of YSZ powder, after thermal cycling at similar condition, it decomposed to two new phases including cubic and monoclinic zirconia with 62 wt% and 38 wt%, respectively.
引用
收藏
页码:7344 / 7350
页数:7
相关论文
共 39 条
[1]   Synthesis and Characterization of Yttria-Stabilized Zirconia Nanoparticles Doped with Ytterbium and Gadolinium: ZrO2 9.5Y2O3 5.6Yb2O3 5.2Gd2O3 [J].
Bahamirian, M. ;
Hadavi, S. M. M. ;
Rahimipour, M. R. ;
Farvizi, M. ;
Keyvani, A. .
METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 2018, 49A (06) :2523-2532
[2]   Ceramic Top Coats of Plasma-Sprayed Thermal Barrier Coatings: Materials, Processes, and Properties [J].
Bakan, Emine ;
Vassen, Robert .
JOURNAL OF THERMAL SPRAY TECHNOLOGY, 2017, 26 (06) :992-1010
[3]   Phase stability of thermal barrier coatings made from 8 wt.% yttria stabilized zirconia: A technical note [J].
Ballard, JD ;
Davenport, J ;
Lewis, C ;
Nelson, W ;
Doremus, RH ;
Schadler, LS .
JOURNAL OF THERMAL SPRAY TECHNOLOGY, 2003, 12 (01) :34-37
[4]  
Bose S., 2007, High Temperature Coatings, P155, DOI [10.1016/B978-0-12-804622-7.00007-3, DOI 10.1016/B978-0-12-804622-7.00007-3]
[5]   Ceramic materials for thermal barrier coatings [J].
Cao, XQ ;
Vassen, R ;
Stoever, D .
JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2004, 24 (01) :1-10
[6]  
Cullity B., 1957, Am. J. Phys, V25, P394, DOI [10.1119/1.1934486, DOI 10.1119/1.1934486]
[7]  
Dearnley PA, 2017, INTRO SURFACE ENG, P423
[8]   Structure and thermal properties of heat treated plasma sprayed ceria yttria co-stabilized zirconia coatings [J].
Di Girolamo, Giovanni ;
Blasi, Caterina ;
Schioppa, Monica ;
Tapfer, Leander .
CERAMICS INTERNATIONAL, 2010, 36 (03) :961-968
[9]   Thermal conductivity of ytterbia-stabilized zirconia [J].
Feng, Jing ;
Ren, Xiaorui ;
Wang, Xiaoyan ;
Zhou, Rong ;
Pan, Wei .
SCRIPTA MATERIALIA, 2012, 66 (01) :41-44
[10]   Phase stability and thermal conductivity of RE2O3 (RE = La, Nd, Gd, Yb) and Yb2O3 co-doped Y2O3 stabilized ZrO2 ceramics [J].
Guo, Lei ;
Li, Mingzhu ;
Ye, Fuxing .
CERAMICS INTERNATIONAL, 2016, 42 (06) :7360-7365