Phenylboronic acid-containing block copolymers: synthesis, self-assembly, and application for intracellular delivery of proteins

被引:48
|
作者
Cheng, Cui [1 ]
Zhang, Xinge [1 ]
Wang, Yanxia [1 ]
Sun, Lei [1 ]
Li, Chaoxing [1 ]
机构
[1] Nankai Univ, Inst Polymer Chem, Minist Educ, Key Lab Funct Polymer Mat, Tianjin 300071, Peoples R China
基金
中国国家自然科学基金;
关键词
CELL-PENETRATING PEPTIDES; IN-VITRO; RADICAL POLYMERIZATION; AQUEOUS-SOLUTION; DRUG-DELIVERY; POLYMERS; CHITOSAN; NANOPARTICLES; INSULIN; RAFT;
D O I
10.1039/c2nj20997g
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The boronic acid group has been known to bind to sugars and living animal cells. Herein, a novel amphiphilic block copolymer poly(2-lactobionamidoethyl methacrylate)-block-poly(3-acrylamidophenylboronic acid) (p(LAMA-b-AAPBA)) was prepared by reversible addition fragmentation chain transfer (RAFT) polymerization. Due to the interaction between lactose moieties and phenylboronic acid moieties in p(LAMA-b-AAPBA), the copolymer could easily form nanoparticles in a spherical shape. The p(LAMA-b-AAPBA) nanoparticles had mean sizes from 238 to 403 nm with a zeta potential of about -20 mV. To study the feasibility of p(LAMA-b-AAPBA) nanoparticles acting as the potential nanocarrier for protein delivery, insulin, as a drug model, was encapsulated into the nanoparticles, the loading capacity was about 11%. Moreover, the nanoparticles demonstrated a sustained release of insulin and had no cytotoxicity on Chinese hamster ovary cells (CHO) and human colorectal carcinoma (Caco-2) cells. Confocal laser scanning microscopy showed that the nanoparticles could be taken up by Caco-2 cells, indicating that the stimuli-response of phenylboronic acid to carbohydrates on the cell surface facilitated the nanoparticles to bind to Caco-2 cells. Thus, the p(LAMA-b-AAPBA) nanoparticles can be considered as a promising carrier for protein transport.
引用
收藏
页码:1413 / 1421
页数:9
相关论文
共 50 条
  • [1] Synthesis and self-assembly of polyzwitterionic phenylboronic acid-containing double hydrophilic block copolymers
    Markova, Pavlina
    Uchman, Mariusz
    EUROPEAN POLYMER JOURNAL, 2021, 151
  • [2] Self-assembly of copolymers containing a polypeptide block
    Castelletto, V.
    Newby, G. E.
    Zhu, Z.
    Hamley, I. W.
    Noirez, L.
    ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 2011, 67 : C230 - C230
  • [3] Synthesis and self-assembly of bottlebrush block copolymers
    Bowden, NB
    Runge, MB
    Dutta, S
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2005, 229 : U1103 - U1103
  • [4] Combining synthesis with self-assembly in block copolymers
    Wang, Muzhou
    Qiang, Zhe
    Akolawala, Sahil
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2019, 257
  • [5] Synthesis and Self-Assembly of Conjugated Block Copolymers
    Xiao, Lin-Lin
    Zhou, Xu
    Yue, Kan
    Guo, Zi-Hao
    POLYMERS, 2021, 13 (01) : 1 - 20
  • [6] Organoboron block copolymers: Synthesis and self-assembly
    Cui, Chengzhong
    Jaekle, Frieder
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2009, 237
  • [7] Synthesis and self-assembly of block copolymers.
    Hillmyer, MA
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1999, 218 : U663 - U663
  • [8] Block Copolymers: Synthesis, Self-Assembly, and Applications
    Feng, Hongbo
    Lu, Xinyi
    Wang, Weiyu
    Kang, Nam-Goo
    Mays, Jimmy W.
    POLYMERS, 2017, 9 (10):
  • [9] Synthesis and self-assembly of fluorinated block copolymers
    Hillmyer, MA
    Lodge, TP
    JOURNAL OF POLYMER SCIENCE PART A-POLYMER CHEMISTRY, 2002, 40 (01) : 1 - 8
  • [10] Synthesis, Self-Assembly and Application of All-Conjugated Block Copolymers
    Xiong Lino
    Zhang Xueqin
    Sun Ying
    Yang Hong
    PROGRESS IN CHEMISTRY, 2015, 27 (12) : 1774 - 1783