Cones over metric measure spaces and the maximal diameter theorem

被引:81
作者
Ketterer, Christian [1 ]
机构
[1] Inst Appl Math, D-53115 Bonn, Germany
来源
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES | 2015年 / 103卷 / 05期
关键词
Curvature-dimension condition; Metric measure space; Cone; Maximal diameter; LOCAL DIRICHLET SPACES; RICCI CURVATURE; LIPSCHITZ FUNCTIONS; SOBOLEV SPACES; GEOMETRY; RIGIDITY; PRODUCTS; BOUNDS;
D O I
10.1016/j.matpur.2014.10.011
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The main result of this article states that the (K, N)-cone over some metric measure space satisfies the reduced Riemannian curvature-dimension condition RCD* (KN, N + 1) if and only if the underlying space satisfies RCD* (N - 1, N). The proof uses a characterization of reduced Riemannian curvature-dimension bounds by Bochner's inequality that was established for general metric measure spaces by Erbar, Kuwada and Sturm in [21] (independently, the same result has been announced by Ambrosio, Mondino and Savare). As a corollary of our result and the Gigli-Cheeger-Gromoll splitting theorem [25] we obtain a maximal diameter theorem in the context of metric measure spaces that satisfy the condition RCD* (C) 2014 Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:1228 / 1275
页数:48
相关论文
共 50 条
[1]   Warped products of Hadamard spaces [J].
Alexander, SB ;
Bishop, RL .
MANUSCRIPTA MATHEMATICA, 1998, 96 (04) :487-505
[2]  
Ambrosio L., NONLINEAR DIFFUSION
[3]  
Ambrosio L., 2005, Lectures in Mathematics ETH Zurich
[4]   METRIC MEASURE SPACES WITH RIEMANNIAN RICCI CURVATURE BOUNDED FROM BELOW [J].
Ambrosio, Luigi ;
Gigli, Nicola ;
Savare, Giuseppe .
DUKE MATHEMATICAL JOURNAL, 2014, 163 (07) :1405-1490
[5]   Calculus and heat flow in metric measure spaces and applications to spaces with Ricci bounds from below [J].
Ambrosio, Luigi ;
Gigli, Nicola ;
Savare, Giuseppe .
INVENTIONES MATHEMATICAE, 2014, 195 (02) :289-391
[6]   Density of Lipschitz functions and equivalence of weak gradients in metric measure spaces [J].
Ambrosio, Luigi ;
Gigli, Nicola ;
Savare, Giuseppe .
REVISTA MATEMATICA IBEROAMERICANA, 2013, 29 (03) :969-996
[7]  
Ambrosio Luigi, BAKRY EMERY CURVATUR
[8]  
Ambrosio Luigi, RIEMANNIAN RICCI CUR
[9]  
[Anonymous], EMS TRACTS MATH
[10]  
Bacher K., 2014, Singular phenomena and scaling in mathematical models, P3