Inverse Dynamics of Human Passive Motion Based on Iterative Learning Control

被引:15
作者
Taniguchi, Shohei [1 ]
Kino, Hitoshi [2 ]
Ozawa, Ryuta [3 ]
Ishibashi, Ryota [4 ]
Uemura, Mitsunori [5 ]
Kanaoka, Katsuya [6 ]
Kawamura, Sadao [3 ]
机构
[1] Panason Elect Works Co Ltd, Appliances Mfg Business Unit, Ctr Res & Dev, Osaka 5718686, Japan
[2] Fukuoka Inst Technol, Dept Intelligent Mech Engn, Fukuoka 8110295, Japan
[3] Ritsumeikan Univ, Dept Robot, Kusatsu 5258577, Japan
[4] Tokyo Metropolitan Univ, Div Human Mechatron Syst, Tokyo 1910065, Japan
[5] Osaka Univ, Grad Sch Engn Sci, Dept Mech Sci & Bioengn, Suita, Osaka 5650871, Japan
[6] Ritsumeikan Univ, Res Org Sci & Engn, Adv Robot Res Ctr, Kusatsu 5258577, Japan
来源
IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART A-SYSTEMS AND HUMANS | 2012年 / 42卷 / 02期
关键词
Human arm; inverse dynamics; iterative learning; torque estimation; BODY SEGMENT PARAMETERS; MODEL; STIFFNESS; DRIVEN; IDENTIFICATION; MOVEMENTS; TORQUES; WALKING; FORCES; MOMENT;
D O I
10.1109/TSMCA.2011.2170413
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Estimation of joint torque is an important objective in the analyses of human motion. In particular, many applications seek to discern torque during a desired human motion, which is equivalent to solving the inverse dynamics. The computed torque method is a conventional means of calculating inverse dynamics. The obtained torque, however, invariably includes errors resulting from inexact inertial and viscoelastic parameters. This paper presents a method for solving the inverse dynamics of a human arm passively during tracking. To achieve precise human motion tracking, iterative learning control is used for motion generation. Some experiments that target a human arm are executed to validate the proposed method.
引用
收藏
页码:307 / 315
页数:9
相关论文
共 29 条
[11]  
Homma K, 2003, IEEE ASME INT C ADV, P908
[12]  
Hutchinson E. B., 1994, IEEE Transactions on Rehabilitation Engineering, V2, P49, DOI 10.1109/86.313146
[13]   High-speed manipulation by using parallel wire-driven robots [J].
Kawamura, S ;
Kino, H ;
Won, C .
ROBOTICA, 2000, 18 :13-21
[14]   Estimation of Multijoint Stiffness Using Electromyogram and Artificial Neural Network [J].
Kim, Hyun K. ;
Kang, Byungduk ;
Kim, Byungchan ;
Park, Shinsuk .
IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART A-SYSTEMS AND HUMANS, 2009, 39 (05) :972-980
[15]   An identification technique for evaluating static body segment parameters in the upper extremity [J].
Kodek, T .
2004 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION, VOLS 1- 5, PROCEEDINGS, 2004, :4747-4752
[16]   Effect of muscle model parameter scaling for isometric plantar flexion torque prediction [J].
Menegaldo, Luciano Luporini ;
de Oliveira, Liliam Fernandes .
JOURNAL OF BIOMECHANICS, 2009, 42 (15) :2597-2601
[17]   Validity of estimating limb muscle volume by bioelectrical impedance [J].
Miyatani, M ;
Kanehisa, H ;
Masuo, Y ;
Ito, M ;
Fukunaga, T .
JOURNAL OF APPLIED PHYSIOLOGY, 2001, 91 (01) :386-394
[18]  
Miyazaki S., 1993, GAIT POSTURE, V1, P133
[19]   Analysis and control of a force display system driven by parallel wire mechanism [J].
Morizono, T ;
Kurahashi, K ;
Kawamura, S .
ROBOTICA, 1998, 16 :551-563
[20]   A sensitivity analysis of the calculation of mechanical output through inverse dynamics: a computer simulation study [J].
Nagano, A ;
Gerritsen, KGM ;
Fukashiro, S .
JOURNAL OF BIOMECHANICS, 2000, 33 (10) :1313-1318