An overdetermined problem in Riesz-potential and fractional Laplacian

被引:47
作者
Lu, Guozhen [1 ]
Zhu, Jiuyi [1 ]
机构
[1] Wayne State Univ, Dept Math, Detroit, MI 48202 USA
基金
美国国家科学基金会;
关键词
Overdetermined problem; Riesz potential; Moving plane method in integral form; Fractional Laplacian; BOUNDARY-VALUE-PROBLEMS; RADIAL SYMMETRY; INTEGRAL-EQUATIONS; EXTERIOR DOMAINS; OPERATOR; SPHERES; TERMS; BALLS;
D O I
10.1016/j.na.2011.11.036
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The main purpose of this paper is to address two open questions raised by Reichel (2009) in [2] on characterizations of balls in terms of the Riesz potential and fractional Laplacian. For a bounded C-1 domain Omega subset of R-N, we consider the Riesz-potential u(x) = integral(Omega) 1/vertical bar x - y vertical bar(N-alpha) dy for 2 <= alpha not equal N. We show that u = constant on partial derivative Omega if and only if Omega is a ball. In the case of alpha = N, the similar characterization is established for the logarithmic potential u(x) = integral(Omega) log 1/vertical bar x - y vertical bar dy. We also prove that such a characterization holds for the logarithmic Riesz potential u(x) = integral(Omega) vertical bar x - y vertical bar(alpha-N) log 1/vertical bar x - y vertical bar dy when the diameter of the domain Omega is less than e(1/N-alpha) in the case when alpha - N is a nonnegative even integer. This provides a characterization for the overdetermined problem of the fractional Laplacian. These results answer two open questions in Reichel (2009) [2] to some extent. Moreover, we also establish some nonexistence result of positive solutions to a class of integral equations in an exterior domain. (C) 2011 Elsevier Ltd. All rights reserved
引用
收藏
页码:3036 / 3048
页数:13
相关论文
共 40 条
[1]   Radial symmetry of overdetermined boundary-value problems in exterior domains [J].
Aftalion, A ;
Busca, J .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1998, 143 (02) :195-206
[2]  
Alexandrov A.D., 1962, Ann. Mat. Pura Appl., V58, P303, DOI [10.1007/BF02413056, DOI 10.1007/BF02413056]
[3]   SYMMETRY RESULT FOR SOME OVERDETERMINED VALUE PROBLEMS [J].
Barkatou, Mohammed ;
Khatmi, Samira .
ANZIAM JOURNAL, 2008, 49 (04) :479-494
[5]   Serrin-type overdetermined problems: An alternative proof [J].
Brandolini, B. ;
Nitsch, C. ;
Salani, P. ;
Trombetti, C. .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2008, 190 (02) :267-280
[6]   On the stability of the Serrin problem [J].
Brandolini, B. ;
Nitsch, C. ;
Salani, P. ;
Trombetti, C. .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2008, 245 (06) :1566-1583
[7]   ASYMPTOTIC SYMMETRY AND LOCAL BEHAVIOR OF SEMILINEAR ELLIPTIC-EQUATIONS WITH CRITICAL SOBOLEV GROWTH [J].
CAFFARELLI, LA ;
GIDAS, B ;
SPRUCK, J .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1989, 42 (03) :271-297
[8]  
Chen W., 2010, AIMS Book Series, V4
[9]   Radial symmetry and regularity of solutions for poly-harmonic Dirichlet problems [J].
Chen, Wenxiong ;
Zhu, Jiuyi .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2011, 377 (02) :744-753
[10]   Classification of solutions for an integral equation [J].
Chen, WX ;
Li, CM ;
Ou, B .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2006, 59 (03) :330-343